5yo with multiple anomalies and rib fusions

Early in Brace (not by me) film clarifying deformity

 Two 3-level unilateral bars with contralateral hemivertebrae

Age 8, VEPTRs with thoracostomy

Age 10 – curve worsening

Added a growing rod between the two unilateral bars

Age 12

 VEPTRs could not generate sufficient force to prevent trunk tilting

Age 13 – "definitive fusion"

Age 17 – on O2 and methadone

Pulmonary Function in EOS: Where We Have Failed

Confessions of a Greg Redding Disciple

Jim Sanders

Professor of Orthopedics and Pediatrics University of Rochester

Orthopedists Think Structurally

- EOS makes the chest too small.
- Expand a small chest volume
- Lengthen the spine
- Pull or push the ribs into a better position

Karol, et al: T1-T12 – Based on 28 patients with congenital scoliosis

Courtesy Greg Redding

Restrictive Respiratory Disease

- Loss of lung volume and lung distensibility
- Loss of rib mobility and normal chest wall expansion with inspiration
- Increased reliance on diaphragm function as the primary muscle of inspiration

Additional Consequences of TIS

- Diminished <u>cough</u> effectiveness, with prolonged and severe respiratory infections
- Diminished <u>exercise</u> tolerance
- Airway torque and kinking with localized airway <u>obstruction</u>
- <u>Pulmonary hypertension</u> and cor pulmonale
- Hypercapnia (respiratory failure)
- ?Postnatal lung growth arrest

Mayer OH, Redding GJ Pediatr Orthop 29(1):35-38, 2009.

Serial FVC Over a 6 Year Interval

28% Reduction from Pre to LAST

16% Reduction Over 6 Years

Dede O et al. J Bone Joint Surg Am 96:1295-1302, 2014.

Redding G. Longitudinal trends over 5 years in Cobb angle, lung function, and nutritional status in children with EO. ID: 1500 E-Poster. 50th SRS Annual Meeting & Course, Abstract Minneapolis, Minnesota, September 30 – October 3, 2015.

The Johnston Concept:

What do we really do?

Goal:

- Lengthen spine to make a bigger box.
- Push up the ribs to increase chest diameter.
- Correct lordosis/rotation to improve airway geometry

But:

- Create spontaneous spine fusion
- Create rib fusions minimizing expansion/contraction
- Do we really correct the airway issues?

What about our outcomes?EOSQ-24

Pulmonary Function: During the past 4 weeks							
5. How difficult has it been for your child to cry/babble/speak (appropriate for age) without experiencing shortness of breath?							
Difficult	Somewhat Difficult	Neutral	Somewhat easy	Easy			
6. How often has your child experienced shortness of breath during activities?							
All of the time	Most of the time	Some of the time	A small amount of the time	None of the time			

Physical Function: <u>During the past 4 weeks</u>							
8. How difficult has it been for your child to move his/her upper body?							
Difficult	Somewhat difficult	Neutral	Somewhat easy	Easy			
9. How difficult has it been for your child to sit up on his/her own?							
Difficult	Somewhat difficult	Neutral	Somewhat easy	Easy			
10. How difficult has it been for your child to keep his/her balance while crawling, walking, or running?							
Difficult	Somewhat difficult	Neutral	Somewhat easy	Easy			

Where have we failed?

- Focus on Cobb angles or spine length
- Both poorly related to what children's needed pulmonary function
- Outcome measures not adequately addressing the pulmonary domain

What's needed?

- Effective chest volume expansion and contraction.
 - Intercostal Muscles
 - Diaphragm
 - Costovertebral joints
 - Rib alignment
 - CNS control
 - Adequate baseline volume
- Lung parenchyma that permits effective gas exchange
- Unobstructed airway geometry

Step 1: Adequately determine pulmonary status

- PFTs are hard to get in children.
- Nearly impossible in young children.
- PFTs only provide limited data and not function.

The Redding Construct:

- If children are breathing well, then three things should happen.
- If not, they will be negatively effected:
 - Do they sleep?
 - Do they play(work)?
 - -Do they grow?

Pulmonary Function Domains

- Do they sleep?
 - Sleep studies
- Do they play (work)?
 - Need to develop criteria
- Do they grow?
 - Need to define uniform growth parameters for children with differing disorders

Step 2: The orthopedic mental change
- start considering chest volume in EOS as dynamic not static

- Our current devices work to make a static box bigger.
- Can we design implants or supports that facilitate rather than block motion?

We need a better paradigm

- It's not just a bigger box.
- It's dynamic expansion and contraction with a bigger box –a larger, more effect bellows.
- Listen to Redding– pulmonary function has three main domains:
 - Can they sleep
 - Can they play (work)
 - Do they grow?
- We need to measure them well.