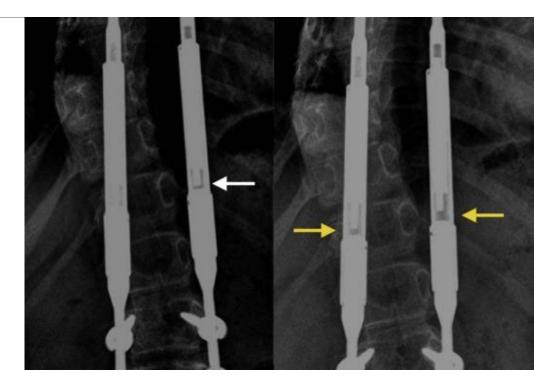
Preop Halo Gravity Traction (HGT) Associated with Decreased Implant Complications in MCGR

MICHELLE WELBORN MD, DANIEL BOUTON MD, IVAN KRAJBICH MD

Disclosures

Michelle Welborn: Depuy Synthes- Consultant; K2M advisory panel; POSNA research grant recipient; editor JPO, Spine deformity

Dan Bouton: nothing to disclose


Ivan Krajbich: K2M- Consultant

MCGR background

implant related complications in MCGR range from 0-100% with an ave complication rate of 44% and UPROR of >30% [1-9]

- Earlier generations had increased failure rates due to o-ring and pin fractures
- 10% rate of rod fracture, 10% rate of rod failure
- Rod fracture and failure has been attributed in part to increased curve rigidity.

How can we decrease complications in patients with severe EOS treated with MCGR:

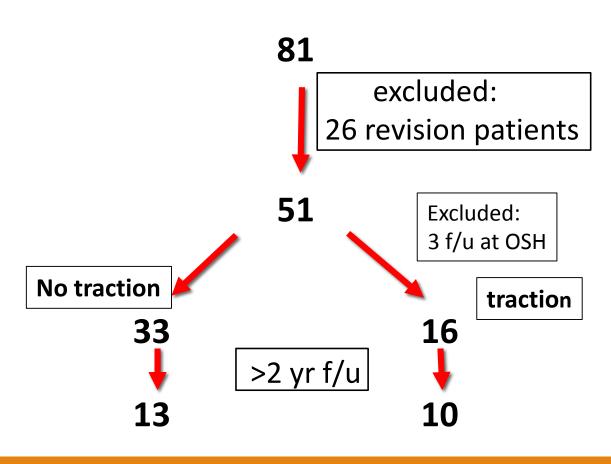
Goal: decrease stress on implants

- Preop:
 - Patients with large, rigid curves undergo preop HGT
 - Preop HGT theoretically makes the curve is less rigid.
 - Decreasing curve rigidity may potentially decreasing implant related complications
- Postop small magnitude high frequency lengthenings
 - Small magnitude lengthenings would decrease the strain exerted on the implants
 - High frequency lengthenings would allow us to keep up with growth

Concerns- can HGT have a negative impact?

- HGT impacts the soft tissues of the whole spine
- So would patients that undergo HGT have a higher or a lower complication rate?

Methods


 IRB approved retrospective cohort study of a prospectively collected database

51 MCGR patients from 2014-2018 treated at a single institution

oAll patients failed conservative management

- all genders, ethnicities, and underlying diagnosis were included
- o <2 yr follow-up and revision patients excluded</p>

MCGR >2 yr followup

	Preop Cobb	% correction on flexibility film	Postop Cobb	% correction	Complication Rate	UPROR	Ave follow-up days
Traction N=10	89 °	17%	44 °	51%	10%	0%	1020
No- Traction N=13	77 °	39%	35 °	55%	31%	15.4%	1067
P-value	0.027	0.000	0.421	0.244	.123	.397	.3409

Traction protocol

o6+ pins

oweight increased BID

otraction for 4-8 weeks total based on:

severity of curvature, preop nutrition status, and response to traction.
 Average of 48 days range (30-76)

•Max activity encouraged:

School, traction walkers, wheelchairs, bikes, accessible playground

Postop Lengthening protocol

Maximum correction sought in OR First lengthening 8 weeks postop

Frequency:

• q6-8 weeks

Lengthen: 2-3mm Preop PA Lateral Radiographs:

• EOS microdose PA/Lateral full spine q3-4 lengthenings

Clinical exam:

lateral

 Palpate anchors at each visit to evaluate for increasing pain, prominence or bursa

Most Recent Follow-up

Lateral

Final in traction

PA

Most recent follow-up Rod status->2 yr follow-up

Traction: no rod failures

- 7/10 achieved maximal length of rod
- 3/10 continuing to lengthen

Non-traction:

- 3/13 still lengthening primary mcgr
- 2/13 skeletally mature, lengthening stopped
- 2/13 proximal anchor failures
- 2/13 rod failures both patients Preop Cobb >80 and generation 1.2 rods,
- 5/13 revised due to max length of rod

Complications

otraction group: 10%

- Ave follow-up 1020 days
- o Intraop dural tear
- **○0% UPROR**

•Non-traction group: 30.8%

- Ave follow-up 1067 days
- o 2 patients with rods that failed to lengthen
 - o both patients at or near skeletal maturity
- o 1 patient with v mild PJK,
 - Associated with proximal hook failure
- o 1 anchor migration requiring revision

015.4% UPROR

	Jun	ctior							
	Preop T1-T12 kyphosis	Preop T5- T12 kyphosis	Postop T1-T12 kyphosis	Postop T5-T12 kyphosis	Postop PJA	Most recent PJA	Duration F/u	Conclusion: PJA is a direct result of intraop sagittal	
HGT n=8	38.7 (-2.96-74.5)	28.1 (-6.26-62.9)	28.5 (5.04-61.8)	23.5 (-9.87-39.3)	4.8 (0.41- 8.66)	4.8 (0.79-10)	853 days	 PJA did not change between initial postop and most recent follow-up 	
Non HGT n =11	28.7 (-24.6-52.9)	25.1 (-24.2-73.2)	27.7 (7.45-48.1)	23.2 (- 7.74- 33.5)	3.2 (- 7.84- 9.36)	4.4 (- 3.49-11)	812 days	No INCREASED RISK OF PJK with HGT	

• Patients with 11° PJA had proximal anchor failure -> revised anchor

Complications: all patients including <2 yr follow-up

o81 MCGR procedures

o51 primary MCGR

18 traction
 2 Dural Tears
 1 Proximal anchor failure

6% UPROR
19% complication rate
Ave follow-up 757 days

\odot 33 no traction

2 rod failures
2 v mild pjk, 1 observed, 1 revised due to implant failure
1 anchor migration
2 wound infection (both high risk neuromuscular patients)
1 symptomatic screw
15% UPROR
24% complication rate
Ave follow-up 674 days

Conclusion

Large curves can be effectively and safely treated with MCGR

Rigid curves achieved equivalent correction to flexible curves with preop HGT
 HGT does not result in a higher complication rate

• PJA is a direct result of intraoperative rod contouring and did not increase with HGT

