Quality of Life: EOSQ, Other Indicators

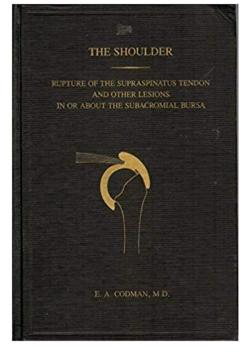
Ying Li, MD

Associate Professor of Orthopaedic Surgery C.S. Mott Children's Hospital, Michigan Medicine, Ann Arbor, MI

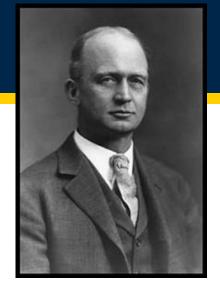
A Please consider the environment before printing this PowerPoint

• Li: see program

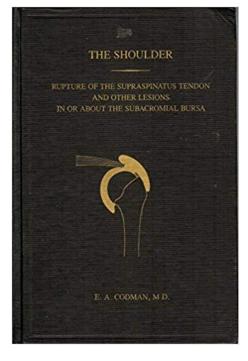
- 48.3 million Americans undergo surgery each year in the U.S.
- 7.1 million surgeries on the musculoskeletal system
- Expenditures exceed \$500 billion USD \rightarrow \$912 billion USD in 2025



"Already in 1900 I had become interested in what I have called the End Result Idea, which was merely the common-sense notion that every hospital should follow every patient it treats, long enough to determine whether or not the treatment has been successful, and then to inquire


if not, why not?"

From the Preface to "The Shoulder" By Dr. Ernest A. Codman, 1934

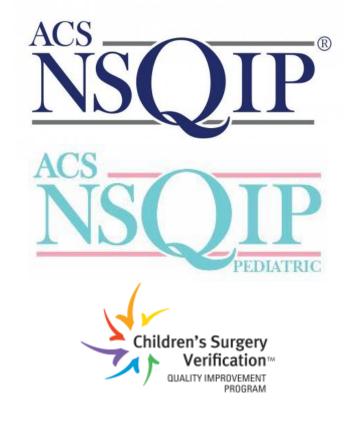


How is success defined?

"Already in 1900 I had become interested in what I have called the End Result Idea, which was merely the common-sense notion that every hospital should follow every patient it treats, long enough to determine whether or not the treatment has been successful, and then to inquire

if not, why not?"

From the Preface to "The Shoulder" By Dr. Ernest A. Codman, 1934



- Measures of treatment effectiveness and quality for surgical conditions primarily centered on clinical outcomes
 - Complication rates
 - Mortality
 - Readmission
- Easy to collect, quantify, categorize

DREN'S HOSPITAL

• Tracking clinical outcomes improves care

- Postoperative clinical outcomes can reflect many aspects of perioperative safety and technical performance
- Do not capture the patient (or caregiver) perspective

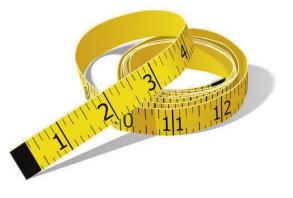
IGAN



 Describe aspects of health status reported directly from patients, without interpretation by a healthcare provider

DRFN'S HOSPITAL

Symptoms Quality of life Disability Mobility Pain



 Describe aspects of health status reported directly from patients, without interpretation by a healthcare provider

)RFN'S HOSPITAL

Symptoms Quality of life Disability Mobility Pain

Measure the things that

patients care about most

Table 1 Clinical outcomes versus patient-reported outcomes						
	Clinical outcomes	PROs				
Definition	Occurrence of specific clinical events	Self-reported health status or experience				
Example	30-d procedural mortality	Health-related quality of life				
Advantages	Outcomes easily quantified Available in clinical and administrative data	Outcomes obtained directly from patients Germane to patient experiences				
	Comparable across providers	Reflect long-term effects				
Disadvantages	Do not capture all aspects of recovery	Labor intensive data collection				
	Infrequent for common, safe procedures	Validity and reliability vary by instrument				
	Risk differences difficult to interpret	Difficult to obtain if communication barriers				

Waljee, Dimick. Adv Surg 2017

Table 1 Clinical outcomes versus patient-reported outcomes						
	Clinical outcomes	PROs				
Definition	Occurrence of specific clinical events	Self-reported health status or experience				
Example	30-d procedural mortality	Health-related quality of life				
Advantages	Outcomes easily quantified	Outcomes obtained directly from patients				
-	Available in clinical and administrative data	Germane to patient experiences				
	Comparable across providers	Reflect long-term effects				
Disadvantages	Do not capture all aspects of recovery	Labor intensive data collection				
	Infrequent for common, safe procedures	Validity and reliability vary by instrument				
	Risk differences difficult to interpret	Difficult to obtain if communication barriers				

Waljee, Dimick. Adv Surg 2017

Capture well-being along dimensions that are **common across conditions** (physical/social function, pain, depression, anxiety)

Condition-specific eg, SRS-22, EOSQ-24

Capture aspects of health status related to a **specific disease or disability**

Table 2 Generic versus condition specific instruments								
	Generic Instruments	Condition-Specific Instruments						
Advantages	Can compare treatments across groups	Clinically relevant						
	Can compare with healthy individuals Can detect unexpected effects	Responsive to change over time Sensitive to outcomes of interest						
Disadvantages	Lack relevant detail	Difficult to compare with general population						
	Limited responsiveness to change	Cannot compare across diseases May not detect unforeseen effects or symptoms						

Waljee, Dimick. Adv Surg 2017

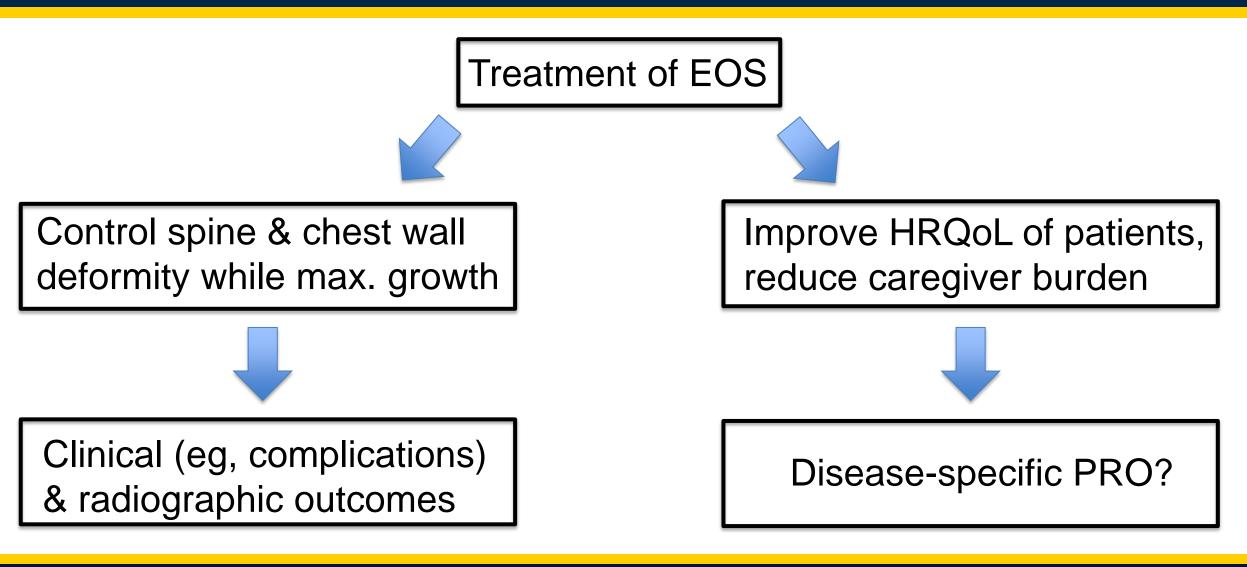
- Not the same as patient-reported experiences
- Satisfaction around a clinical encounter
 - Lavela SL (Patient Exp J 2014): "the sum of all interactions, shaped by an organization's culture, that influence patient perceptions across the continuum of care"
- Consumer Assessment of Healthcare Providers and Systems (CAHPS)
 - Provider communication, cleanliness, accessibility of services

- PROs essential to define treatment effectiveness
- Early onset scoliosis (EOS) potentially fatal if untreated
- Spine deformity \rightarrow chest wall deformity \rightarrow pulmonary restriction

Treatment of EOS

Control spine & chest wall deformity while max. growth

Clinical (eg, complications) & radiographic outcomes


Health-Related Quality of Life in Children With Thoracic Insufficiency Syndrome

Michael G. Vitale, MD, MPH, *†‡ Hiroko Matsumoto, MA, *†‡ David P. Roye Jr, MD, *† Jaime A. Gomez, MD, *† Randal R. Betz, MD, § John B. Emans, MD,// David L. Skaggs, MD,¶ John T. Smith, MD,# Kit M. Song, MD, ** and Robert M. Campbell Jr, MD††

• Child Health Questionnaire (CHQ)

DREN'S HOSPITAL

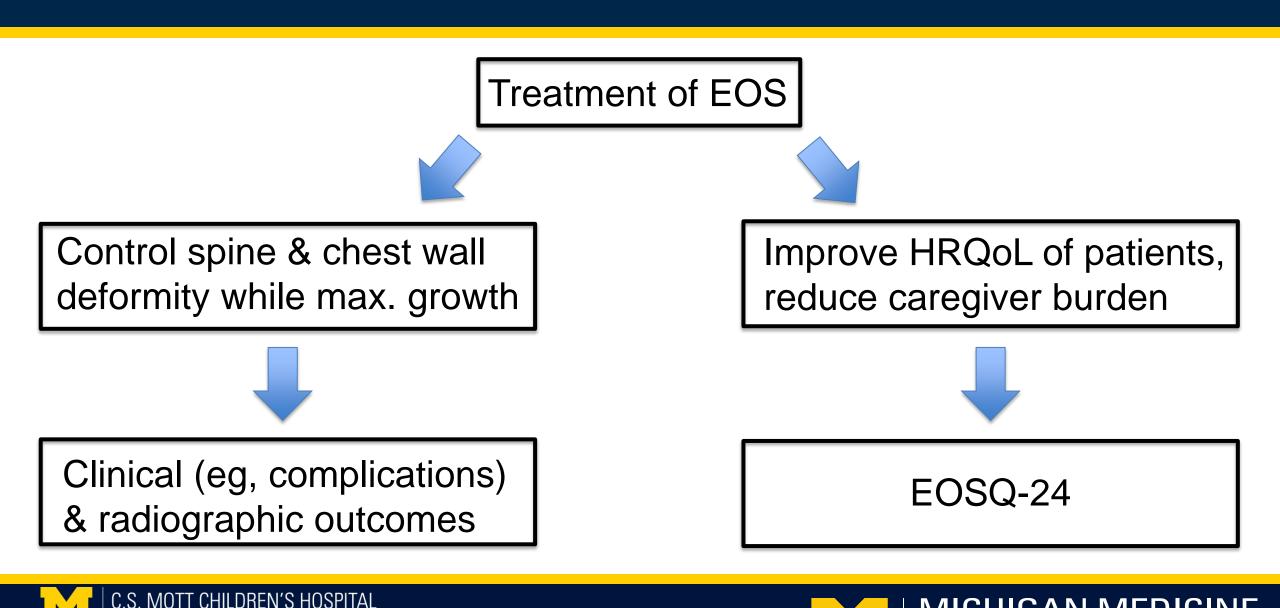
- HRQoL in children with EOS significantly impaired with regard to physical function and caregiver burden
- CHQ had limited responsiveness to treatment, unable to examine issues related to pulmonary function → need for disease-specific PRO

C.S. MOTT CHILDREN'S HOSPITAL

Measuring Quality of Life in Children With Early Onset Scoliosis: Development and Initial Validation of the Early Onset Scoliosis Questionnaire

Jacqueline Corona, MD,*† Hiroko Matsumoto, MA,*† David P. Roye, Jr, MD,*† and Michael G. Vitale, MD, MPH*†

JPO 2011


The Final 24-Item Early Onset Scoliosis Questionnaires (EOSQ-24): Validity, Reliability and Responsiveness

Hiroko Matsumoto, MA,*† Brendan Williams, MD,‡ Howard Y. Park, MD,§ Julie Y. Yoshimachi, BA,* Benjamin D. Roye, MD, MPH,* David P. Roye, Jr, MD,* Behrooz A. Akbarnia, MD, || John Emans, MD,¶ David Skaggs, MD,§# John T. Smith, MD,** and Michael G. Vitale, MD, MPH*

IGAN

JPO 2018

EOSQ-24

Completed by caregiver

General Health Pain **Pulmonary Function** Transfer **Physical Function Daily Living** Fatigue Emotion **Parental Impact Financial Impact Child Satisfaction Parent Satisfaction**

Health-Related Quality of Life in Early-Onset Scoliosis Patients Treated Surgically

EOSQ Scores in Traditional Growing Rod Versus Magnetically Controlled Growing Rods

Michael E. Doany, BS,* Z. Deniz Olgun, MD,[†] Gizem Irem Kinikli, PT,[‡] Senol Bekmez, MD,[§] Aykut Kocyigit, MD,[¶] Gokhan Demirkiran, MD,[¶] A. Ergun Karaagaoglu, PhD,^{||} and Muharrem Yazici, MD[¶]

- 25 TGR, 19 MCGR
- Similar age at index surgery, deformity correction, complication rates
- TGR patients older at time of EOSQ-24, had longer follow-up

Spine 2017

Health-Related Quality of Life in Early-Onset Scoliosis Patients Treated Surgically

EOSQ Scores in Traditional Growing Rod Versus Magnetically Controlled Growing Rods

Michael E. Doany, BS,* Z. Deniz Olgun, MD,[†] Gizem Irem Kinikli, PT,[‡] Senol Bekmez, MD,[§] Aykut Kocyigit, MD,[¶] Gokhan Demirkiran, MD,[¶] A. Ergun Karaagaoglu, PhD,^{||} and Muharrem Yazici, MD[¶]

TABLE 2. Questionnaire Results, Adjusted for Follow-up								
	Questionnaire Results (Mean)		Adjusted for Follow-up (Means; 95% Confidence Interval)					
Domain	MCGR	TGR	Р	MCGR	TGR	Р		
General health	59.9	58	.703	66.6 (56.5-76.7)	52.9 (44.7-61.1)	.084		
Pain/discomfort	71.1	77	.642	86.0 (72.4–99.7)	65.6 (54.4-76.8)	.059		
Physical function	72.4	57	.075	78.0 (60.0-96.0)	52.7 (38.0-67.4)	.075		
Pulmonary function	86.2	87	.896	95.3 (82.6-107.9)	80.0 (69.7-90.5)	.127		
Transfer	65.8	51	.16	54.3 (32.7-76.0)	59.7 (42.0-77.4)	.749		
Daily living	50	61.5	.287	55.0 (32.1-77.9)	57.7 (39.0-76.5)	.877		
Fatigue/energy level	71.1	77	.421	76.1 (60.4-91.7)	73.2 (60.4-86.0)	.812		
Emotion	61.2	52	.219	57.6 (41.8-73.4)	54.7 (41.8-67.6)	.811		
Parental burden	53.4	46	.308	51.3 (35.8–66.8)	47.6 (34.9-60.3)	.758		
Financial burden	61.8	38	.002	61.4 (45.6-77.2)	38.3 (25.4-51.2)	.064		
Overall satisfaction	82.9	67.5	.01	83.2 (70.7-95.8)	67.2 (57.0–77.6)	.106		
Average	66.9	61.1	.194	69.6 (60.2-78.9)	59.1 (51.4–66.8)	.155		

Spine 2017

IGAN

The Reliability and Concurrent Validity of the Scoliosis Research Society-22 Patient Questionnaire for Idiopathic Scoliosis

Marc Asher, MD,* Sue Min Lai, PhD,† Doug Burton, MD,* and Barbara Manna, RN*

- Adolescent idiopathic scoliosis
- Completed by patient
- Option for EOS patients ≥10 years?

Function Pain Self-Image Mental Health Satisfaction

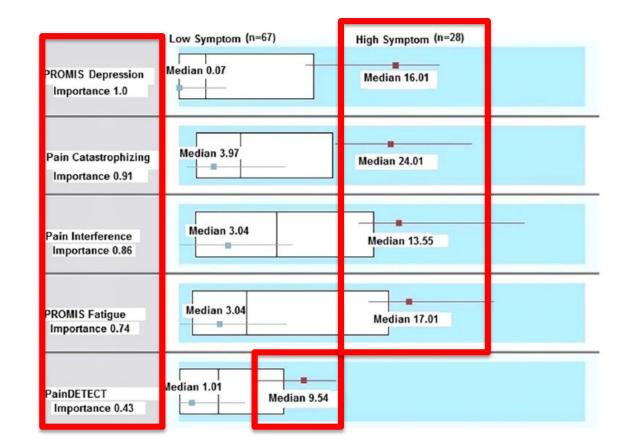
Spine 2003

A cluster of high psychological and somatic symptoms in children with idiopathic scoliosis predicts persistent pain and analgesic use 1 year after spine fusion

Terri Voepel-Lewis¹ | Michelle S. Caird² | Alan R. Tait¹ | Frances A. Farley² | Ying Li² | Shobha Malviya¹ | Afton Hassett¹ | Monica Weber¹ | Emily Currier¹ | Trevor de Sibour¹ | Daniel J. Clauw¹

- 95 AIS patients undergoing posterior spinal fusion
- PROs administered preop and 1 year postop
 - PROMIS fatigue, depression, anxiety, pain catastrophizing, pain interference
 - painDETECT (neuropathic pain)
 - Pain intensity, location, duration

Paediatr Anaesth 2018



A cluster of high psychological and somatic symptoms in children with idiopathic scoliosis predicts persistent pain and analgesic use 1 year after spine fusion

Terri Voepel-Lewis¹ | Michelle S. Caird² | Alan R. Tait¹ | Frances A. Farley² | Ying Li² | Shobha Malviya¹ | Afton Hassett¹ | Monica Weber¹ | Emily Currier¹ | Trevor de Sibour¹ | Daniel J. Clauw¹

- 1/3 patients in "High Symptom Cluster"
- Higher pain intensity, pain interference, neuropathic pain
- More likely to be taking analgesics at 1 year postop

MOTT CHILDREN'S HOSPITAL

Paediatr Anaesth 2018

CHIGAN

- Describe aspects of health reported directly from patients (or caregivers)
- Encompass important elements of disability and function
- Distinct from clinical outcomes and patient experience
- Offer a unique perspective of clinical effectiveness of treatment options

IGΔ

