Surgical and Health-Related Quality of Life Outcomes of Growing Rod Graduates with Severe vs. Moderate Early Onset Scoliosis

Ilkka J. Helenius,¹ Paul D. Sponseller,² Anna McClung,³ Jeff B. Pawelek,³ Muharrem Yazici,⁴ John B. Emans,⁵ George H. Thompson,⁶ Charles Johnston,⁷ Suken A. Shah,⁸ and Behrooz A. Akbarnia⁹

 ¹Department of Paediatric Orthopaedic Surgery, University of Turku and Turku University Hospital, Turku, Finland;
²Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, Maryland; ³Growing Spine Foundation, Milwaukee, Wisconsin; ⁴Department of Orthopaedics, Hacettepe University, Faculty of Medicine, Sihhiye, Ankara, Turkey; ⁵Department of Orthopaedic Surgery, Children's Hospital Boston, Boston, Massachusetts;
⁶Division of Pediatric Orthopaedic Surgery, Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, Ohio; ⁷Department of Orthopedics, Texas Scottish Rite Hospital, Dallas, Texas; ⁸Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware; ⁹Department of Orthopaedic Surgery, University of California-San Diego, San Diego, California

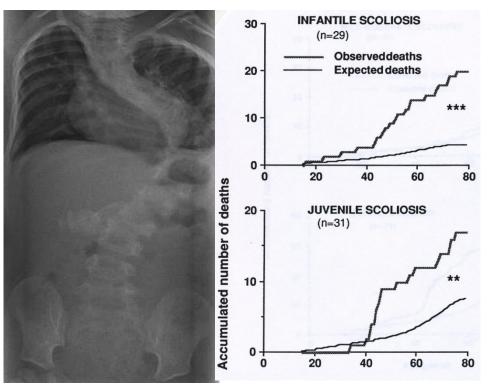
Turun yliopisto University of Turku

Disclosures

Ilkka Helenius: consultant for Medtronic; grants and research funding from Medtronic, Baxter International, K2M via Innosurge As. Paul Sponseller: consultant for DePuy Synthes Spine; grants and research funding from DePuy Synthes Spine; royalties from DePuy Synthes Spine, Globus Medical; advisory board or panel member for Oakstone Medical Publishers and *Journal of Bone Joint Surgery*.

Anna McClung: no disclosures.

Jeff Pawelek: board member of San Diego Spine Foundation. Muharrem Yazici: no disclosures.


John Emans: consultant for Medtronic, royalties from DePuy Synthes Spine, consultant for Zimmer Biomet.

George Thompson: member of Growing Spine Study Group Executive Committee; editorial or governing board member of *Journal of Pediatric Orthopedics*; travel expenses, other financial or material support from Medtronic and NuVasive; IP royalties, paid consultant, stock or stock options, travel expenses and per diem, and other financial or material support from OrthoPediatrics; travel expenses and per diem, as well as other financial or material support from Shriners Hospital for Children; board or committee member of Shriners Hospital for Children Medical Advisory Board, Société Internationale de Chirurgie Orthopédique et de Traumatologie; publishing royalties, financial or material support from Wolters Kluwer Health - Lippincott Williams & Wilkins. Charles Johnston: Royalties from Medtronic and Elsevier.

Suken Shah: board or committee member of the American Academy of Orthopaedic Surgeons, Scoliosis Research Society, Setting Scoliosis Straight Foundation, Pediatric Orthopaedic Society of North America; IP royalties, paid consultant for DePuy Synthes Spine; research support from Endo-Surgery, Ethicon, and DePuy Synthes Spine and K2M via Setting Scoliosis Straight Foundation; stock or stock options for Globus Medical, Innovative Surgical Designs; IP royalties from K2M; paid consultant for NuVasive, Stryker;

Behrooz Akbarnia: consultant for NuVasive; grants from NuVasive to institution; royalties from NuVasive, K2M, and DePuy Synthes Spine.

Severe Early Onset Scoliosis

Pehrsson et al. Spine 1992

Severe EOS: Major coronal curve > 90° (C-EOS; Williams et al. JBJS 2014)

Associated with increased mortality (Pehrsson et al. Spine 1992)

No previous studies at the end of growth-friendly management in severe EOS

Growing rods lack apical control, correction with cantilever & distraction of concavity (Akbarnia JBJS 2007)

Delaying tactics popular, unclear how long we can wait in terms of major curve magnitude (Fletcher et al. JPO 2012)

Severe and Moderate EOS cohorts

A retrospective review of prospectively collected Growing Spine Study Group database for growing rod surgery in EOS with min 2-yr FU (n = 569)

Severe EOS: 40 children aged 10 years or less with severe EOS (major curve $\geq 90^{\circ}$) operated using traditional growing rods, with minimum 2-yr FU after last lengthening or final fusion

Moderate EOS from the same database:

40 age (± 1 year), gender, cause of EOS, and number of lengthening matched (± 1) children

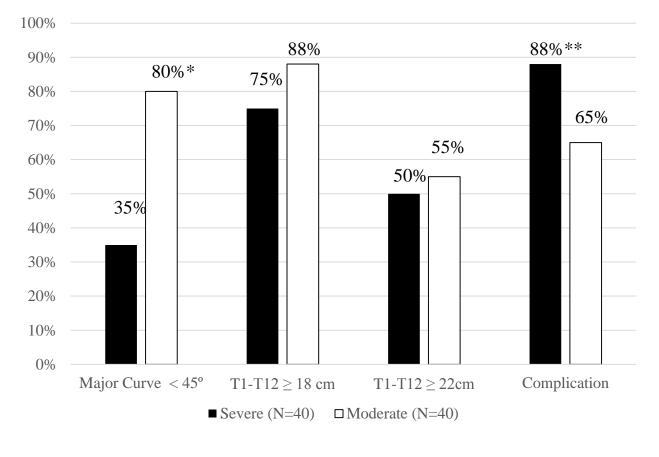
Data Collection

Time points of interest: Preop, Index surgery, Distraction period, Pre-definitive, Post-definitive

Clinical data collected: Age at surgery, Height, Weight, Etiology of EOS, Preop Halo traction, FU time, Number of lengthenings,

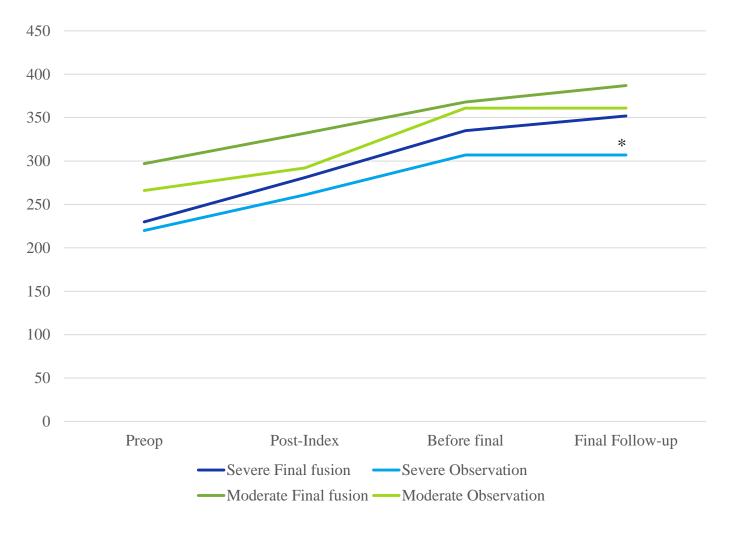
Surgical data: OR time; Blood loss; Type and levels of instrumentation; Revisions (Planned, unplanned)

Complications: Wound related (Deep surgical site infection); Implant (misplacement, pull-out, rod fracture); Alignment (PJK); Neurologic (New deficit, loss of MEPs); Other


Clinical Characteristics

Characteristics	Severe (n=40)	Typical (n=40)	P value
Age, yrs	5.4 (1.4-9.7)	5.3 (1.4-9.9)	0.94
Follow-up, yrs	9.9 (3.4-21)	8.0 (3.9-13)	0.007
Congenital	8	8	1.0
Idiopathic	12	12	
Neuromuscular	13	13	
Syndromic	7	7	
Preop halo traction	6	3	0.29
No. of lengthenings	7.0 (3-15)	8.2 (3-18)	0.11
Final fusion	27	12	0.001

Radiographic Outcomes


Characteristics	Severe (n=40)	Moderate (n=40)	P value
Major curve (°)			
Preop	102 (90-139)	63 (33-88)	< 0.001
After Index	58 (20-107)	37 (11-88)	< 0.001
FFU	56 (10-91)	36 (12-89)	< 0.001
T1-S1 height (mm)			
Preop	227 (138-380)	266 (145-416)	0.001
After Index	275 (137-365)	292 (168-431)	0.16
FFU	337 (159-447)	363 (260-510)	0.077
T1-T12 height (mm)			
Preop	140 (73-244)	155 (72-257)	0.24
After Index	167 (71-233)	177 (82-261)	0.28
FFU	213 (80-291)	224 (139-321)	0.27

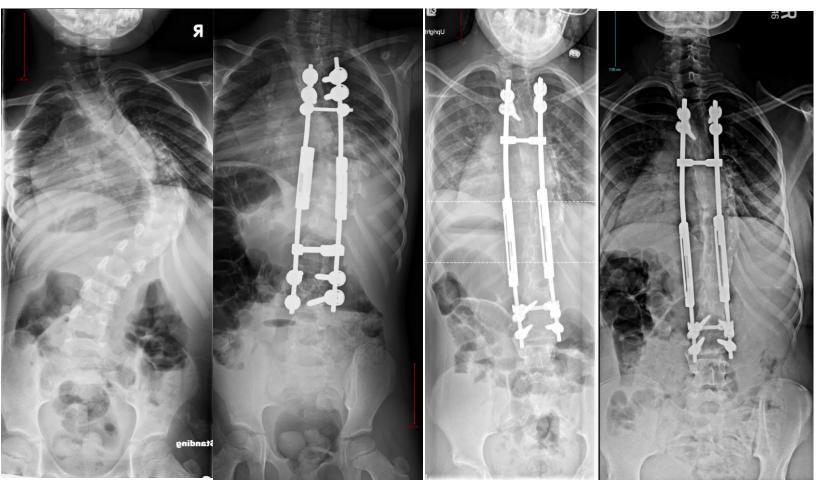
Outcomes at the End of Growing Rod Management

*P<0.001 **P<0.05

Effect of Final fusion on T1-S1 Height

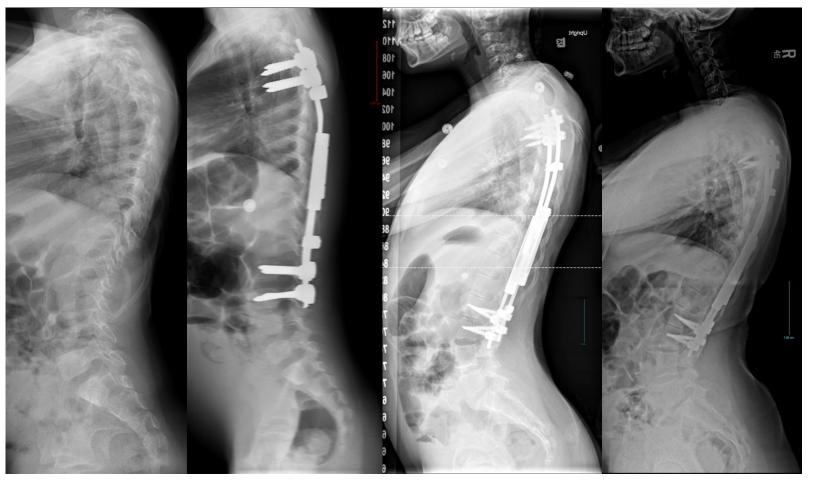
*P=0.025 between final fusion and observation in the severe group

Complications


	Severe (n=40)	Typical (n=40)	P value
Surgical* complication, n (%)	32 (80%)	24 (60%)	0.051
Surgery for complication, n (%)	29 (73%)	25 (63%)	0.34
Deep surgical site infection, n (%)	13 (33%)	4 (10%)	0.027

*Included wound-related, implant-related, alignment-related; neurologic, dural tears

24-Item EOS Questionnaire


Domain	Severe (n=40)	Moderate (n=40)	P value
Daily living	60 (13-100)	51 (0-100)	0.43
Emotion	74 (0-100)	73 (25-100)	0.66
Fatigue/energy level	71 (0-100)	62 (25-100)	0.23
Financial burden	66 (25-100)	75 (0-100)	0.79
General health	71 (13-100)	76 (50-100)	0.58
Overall satisfaction	77 (25-100)	66 (0-100)	0.25
Pain/Fatigue	71 (13-100)	79 (50-100)	0.49
Parental burden	70 (15-100)	65 (5-100)	0.59
Physical function	56 (0-100)	69 (8-100)	0.26
Pulmonary function	93 (63-100)	87 (75-100)	0.056
Transfer	77 (0-100)	75 (0-100)	0.93

Growing Rod Graduate

4-year-old girl with 94° idiopathic early onset scoliosis. 10-yr FU. Two rod fractures. No final fusion. 3 years follow-up after last lengthening

Sagittal balance

Same patient as in the previous slide. Note elongation of vertebral bodies.

Conclusions

Severe EOS can be treated effectively using growing rod surgery.

Delaying EOS surgery until major curve achieves 90 degrees results into larger residual curve and more complications than treating it at earlier.

At the end of growing rod management (Severe vs. Moderate): 35% vs. 80% had major curve < 45 degrees 75% vs. 88% had reached T1-T12 >18 cm 50% vs. 55% had reached T1-T12 > 22 cm

Scores on the EOSQ-24 questionnaire were highest for the pulmonary function domain in both severe and moderate EOS groups.