

Achondroplasia in 2018

Paul D Sponseller MD ICEOS Mini-Symposium: CHALLENGES IN TREATING DYSPLASIA November 15, 2018 1:40-1:49

Pathogenesis and Treatment opportunities

Spine Deformities

Achondroplasia

- Causative gene found (1995) by Bellus, Heffernon
 - Johns Hopkins
- Fibroblast growth factor receptor 3 FGFR3
 - 99% with same Gly380Arg substitution; <1% with Gly375Cys
 - Autosomal dominant
 - 100% penetrant
 - 80-90% spontaneous mutation
 - Advanced paternal age

OPAEDIC SURGERY

– Molecular prenatal diagnosis available

GAIN OF FUNCTION: mutation associated with an increase in normal functions of protein

NORMAL

FGFs bind to FGFR3

Inhibits proliferation of cartilage cells

ACHONDROPLASIA

Vasoritide (C-natriuretic peptide analogue)

A: Chondrocyte with mutated FGFR3 that down-regulates its development via the MAPK/ERK
 B: Vosoritide (BMN 111) blocks this mechanism by binding to the atrial natriuretic peptide B, which subsequently inhibits the MAPK/ERK path
 ORTHOPAEDIC SURGERY

Medical complications in achondroplasia

Obstructive sleep apnea

Referral to pulmonology, ENT
Tonsillectomy / adenoidectomy
CPAP

Central sleep apnea

Referral to neurosurgery

– Foramen Magnum Decompression

- Upper cervical instability
- Kyphosis in Achon
- Scoliosis
- <u>Stenosis</u>- Achon

Achondroplasia Spine

- Early-onset foramen magnum stenosis
 - Some improve spontaneously
 - Suspect if sleep apnea, weakness
 - MRI, sleep study to evaluate

OPAEDIC SURGERY

– Foramen magnum decompression

Achondroplasia Spine Issues ^{JOF}

- How to manage kyphosis
- Does bracing work?
- Indications for spine fusion?
- When should you fuse to sacrum?

TL Kyphosis in Achondroplasia

- Characteristic feature
- <1 year: 94% prevalence
- 30% persistent
- Etiology: hypotonia
- *T10-L4*
- Corrects in prone position

Achondroplasia -Spinal problems

HOPAEDIC SURGERY

Thoracolumbar kyphosis before walking

 usually resolves shortly after walking
 If not, L1 may progressively wedge

TLK Clinical Study

70% resolved

30% pts with persistent TLK at final FU

- 30% pts ≥40 ° of persistent TLK
 - (80% symptomatic PSF)

70% pts 20-40° of persistent TLK
(15% symptomatic - PSF)

JOHNS HOPKINS

Radiographic Predictors of Persistent TLK

Resolved Persistent

- Apical vertebral translation:
 5% (p=0.001)
- <u>Apical vertebral wedging</u> for height:
 - 6% (*p*=0.031)

Clinical Parameters Predicting persistent TLK

Sitting:
 7 – 14 months

Walking: 15 – 30 months Motor delay: Inability to sit at 14 mos or walk independently At 30 months

Achondroplasia Spine Issues ^{JOE}

 Does bracing work? - No data on this point; try in late kyphosis Indications for spine fusion: – Any TL decompression for stenosis in immature patient Otherwise will progress • For deformity alone: – If painful, progressive – Most tolerate mild TL kyphosis OPAEDIC SURGERY

Case example – interval improvement

- Age: 14 months
- Sitting Age: 12 months
- Not yet walking

 14 months

 RTHOPAEDIC SURGERY
 Kyphosis: 40 degrees

Case 1 – interval improvement^{OHNS HOPKINS}

- Age: 14 months
- Walking age: 27 months
- No Brace; kyphosis improved
- Further follow up needed?

14 months Kyphosis: 40° 4 years Kyphosis: 40°

Case 1 – recurrence

- 14 yrs: claudication
- Squats after walking
- Temporary foot drop

14 years Kyphosis: 32º degrees

Case 1 – recurrence

- MRI confirmed stenosis
- Decompression T12-L4
- Instrument kyphosis in immature pts
- Don't overcorrect

s/p PSF

- High risk of IONM changes (~30%)
- Avoid Hooks, instruments in canal
- Pedicle & Screw diameter ok
 - 5-7 mm
 - Length decreased by ~1 cm
- High risk of dural violation
 - Nerve roots seem "pressurized"

Should you to fuse to sacrum ?

 Lower re-stenosis;
 trend to difficulties with personal care

Case 2 8 yr old with Achondroplasia

- S/P F. Magnum decomp x 2
- Neurogenic Claudication
- MR confirms stenosis
- Recommendation
 - Decompress?
 - Fuse + metal?
 - Levels?
 - Or Wait?

Further surgery needed? *What type*And approach *How far What alignment?*

Extension of Fusion to T8 Looked good (then!)

Next Steps?

• Stabilized, no further complaints

• Final AP and lat 4/18

Summary

- 70% of children "walk out of" kyphosis
- Bracing efficacy unknown
- Instrument all adolescent decompressions
- Correct only to prone kyphosis
- Judicious fusion to sacrum

Geneticist invaluable in monitoring

Thank you!

Tohns

Hopkin

Resources for Syndromes

- Online Mendelian Inheritance in Man (OMIM)
 Online Mendelian Inheritance in Man
 - Available through NLM/Pub Med
 - Allows search by findings
- National Organization for Rare Disorders (NORD) (<u>http://www.rarediseases.org/</u>)
 - Includes summaries of rare disorders
 - Medical Geneticist

OPORTHOR MORE SUBJECT OF Syndromes

Thank You

ORTHOPAEDIC SURGERY

Thank You

Genu Varum (Surgery)

Preoperative, 1 year, and 2 years radiographs for a 2 year old boy with achondroplasia

ORTHOPAEDIC SURGERY

Achondroplasia

- Most common skeletal dysplasia
- 1:10,000-1:30,000
- Dwarfism in ancient Egypt, Greece, Rome, ~3,000 to ~30 BCE
- Revered by rulers, general population

Historical Review Dwarfs in Ancient Egypt

Chabira Kozma* Department of Pediatrics, Georgetown University Hospital, Washington, District of Columbia Beceived 3 July 2005; Accepted 10 October 2005

Historical Review Skeletal Dysplasia in Ancient Egypt

Chahira Kozma¹*

The Ancient Egyptian Dwarfs of the Pyramids: The High Official and the Female Worker

Chahira Kozma,¹* Azza Mohamed Sarry El Din,² Rokia Abd El Shafy El Banna,² Wafaa Abd El Samie Kandeel,² and Ralph Lachman³

CRTHOPAEDIC SURGERY

Discovered in limestone tomb in 1989 Western field of great pyramid Khufu

Binding FGF to FGFR3 dimerizes the receptors

Dimerization activates intrinsic tyrosine kinase activity

Activated FGFR3 ubiquitinated to direct to Operational and the stops of the stops

With FGFR3 mutation, dimerization is to the stable & too much signaling occurs JOHNS HOPKINS

Achondroplasia: transmembrane domains stabilize dimers

TD1: disulfide bonds in extracellular domain stabilize dimers

TD2: kinases are activated

All mutations: RTHOPAEDIC SURGERY kinases activated, hinders ubiguitination. Not degraded

FGFR3 signaling pathways important in growth plate of chondrocytes

HOPAEDIC SURGERY

MAPK: Mitogen activated protein kinase. Negatively affects proliferation, terminal differentiation and matrix synthesis (via p38 and ERK)

STAT1: Signal transducer and activator of transcription. Inhibits chondrocyte proliferation.

FGFR3 signaling pathways important

C-type natiuritic peptide can bind to natriuritic peptide receptor B. Causes accumulation of intracellular cGMP. CNP-NPR-B signals <u>antagonize MAPK</u> signaling.

THIS IS THE MECHANISM OF VOSORITIDE

ACHONDROPLASIA IS A METAPHYSEAL

- Normal = A, D
- Epiphyseal = B
- Metaphyseal = C

HOPAEDIC SURGERY

- Diaphyseal = C
- Spondylo = E

Achondroplas ia

Average stature

OVAL LUCENCY OF PROXIMAL FEMURS

'ice cream scoopers'

INTERPEDICULAR NARROWING

LUMBAR REGION

Average stature child

MEDICINE

SHORT, BROAD CONE-SHAPED PROXIMAL AND MIDDLE PHALANGES

Small foramen magnum in achondroplasia

- Cervicomedullary compression
- Central sleep apnea
- Hydrocephalus
- Long track signs (hyperreflexia, clonus, paresis)
 - Monthly OFC on achondroplasia-specific curves, regular complete neurologic exam/developmental assessment
 MRI, sleep study

ORTHOPAEDIC SURGERY

Other phenotypic features of achondroplasia

INCOMPLETE ELBOW EXTENSION

RHIZOMELIA MID-FACE HYPOPLASIA LUMBAR LORDOSIS RELATIVE MACROCEPHALY

UNIQUE GROWTH FEATURES OF ACHONDROPLASIA

10 11 12 13 14 15 16

AGE (y)

BMI 20

15

10

5

Ó

BMI is inaccurate surrogate for body fat without more research to define its correlation with body composition

95TH

50TH

5TH

BMI IN ACHONDROPLASIA

Dramatic disproportion in upper segment: lower segment at all ages ORTHOPAEDIC SURCESCOMPARED to average stature

Medical Complications, Treatment

Achondroplasia- techniques

Correct kyphosis only to "best bend"

Medical complications in achondroplasia

Recurrent otitis, chronic middle ear fluid

Speech delay, hearing deficit
Screen with annual audiology
Refer to ENT
Placement of tubes
**Jugular bulb dehiscence = absence of roof over jugular bulb

Medical complications in achondroplasia

- Narrow spinal canal, lordosis
 - Nerve compression
 - Pain
 - Decreased endurance
 - Bowel/bladder incontinence
 - Inactivity cycles with overweight/obesity
 - Squatting, weight reduction, decompression

410-614-0977 Colleen Gioffreda, Program administrator Julie Hoover-Fong, MD, PhD, Director OPAEDIC SURGERY

- Upper cervical instability in SED, Kneist, MPS
- Kyphosis in Achon, Larsen, Diastrophic (resolving?)
- Scoliosis in SED, Metatropic

OPAEDIC SURGERY

 Stenosis: Achon, r.chondrodysplasia punctata

No pubertal growth spurt in achondroplasia

Achondroplasia Spine Cases

John E. Herzenberg IPOS BAD TO THE BONE: CHALLENGES IN TREATING DYSPLASIA AND GENETIC SYNDROMES November 30, 2017 4:05

Known Cartilage Defects

ORTHOPAEDIC S

significant effect on matrix

Additional comments about achondroplasia

- Average adult height: male = 51", female = 48"
- Growth hormone- no significant improvement
- Limb lengthening
- Obesity
- Hypertension

Achondroplasia

- FGFR3 encodes 1 of 4 FGF receptors
- All FGF receptors have:
 - Extracellular ligand-binding domain
 - Transmembrane domain
 - Intracellular domains

Rhizomelia

- Hindered reach
- Adaptive equipment

Thoracolumbar kyphosis

- Often resolves spontaneously
- Monitor
- Genu varus, tibial bowing
 - Pain

OPAEDIC SURGERY

- Monitor closely early, osteotomies

1. TLK in relation to walking age

ORTHOPAEDIC SURGERY

Other Clinical Features of Ach^{JOHNS HOPKINS}

- Midface hypoplasia / relative macrocephaly
- Rhizomelia
- Hypotonia, joint laxity
- Elbow flexion contractures

 No significant effect on function
- Trident hand

Increased lumbar lordosis- worsens stenosis

ORTHOPAEDIC SURGERY

Associated Clinical Parameters

Odds of Clinical Factors Predicting Thoracolumbar Kyphosis in 60 Patients With Achondroplasia

	Multivariate Model		
Variables	OR	95% CI	Р
Developmental motor delay			
	4	1.05-15.11	0.043
Foramen magnum decompression			
	1.64	0.42-6.45	0.476
Hydrocephalus			
	2.45	0.39-15.15	0.337
Female			
	1.59	0.43-5.85	0.485
Ventriculoperitoneal Shunt			
	0.63	0.04-9.58	0.739

ORTHOPAEDIC SURGERY

63

CONCLUSION

- Most pts with TLK ≥ 20° improve after 1 year of walking age (58%)
- TLK 20-40° → non-surgical management
- TLK ≥40° or symptomatic → decompression and PSF

- Apical vertebral wedging for height and apical translation is associated with persistent TLK
- Developmental motor delay is
 associated with persistent TLK

Case 1 – improvement

- 14 month old
- Sat 9 months
- Not yet walking
- Kyphosis 33 degrees supine
- Discussion:
 - Is this a hemivertebra?
 - What workup for non-ambulation?
 - Rx for Kyphosis:

RTHOPAEDIC SURGERY • restrict sitting, brace, cast?

Case 1 – Follow up

- Walked 15m^{supine}
- No brace
- Neuro NI.

14 months

2 years

3 years

6 years

Case 2 Summary

- <u>2001</u>, decompression/laminectomy from L1 to L5 to relieve a lumbosacral stenosis
- fused T12 through S1 with rods and hardware fixation.
- <u>11/27/01</u>, there was skin breakdown over the hardware with a dark eschar
 - covered by a rhomboid flap
- <u>11/29/06</u> revision and fusion of T-12 to T-8.

