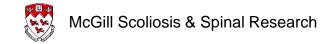
Modern Luque Trolley for the Management of Early-Onset Scoliosis: The First Ten Patients with a New Gliding Implant with Two-year Follow Up

Learning Curve


Andrew Tice¹, Ahmed Aoude², Ron El-Hawary³, Jean Ouellet²

- 1. University of Ottawa, CHEO Ottawa Ontario, Canada
- 2. McGill University Health Centre & Shriners Hospital, Montreal, QC, Canada.
- 3. Dalhousie University, IWK Health Centre Halifax, NS Canada

Hôpitaux Shriners pour enfants[®] Shriners Hospitals for Children[®]

Disclosures

Direct Conflicts

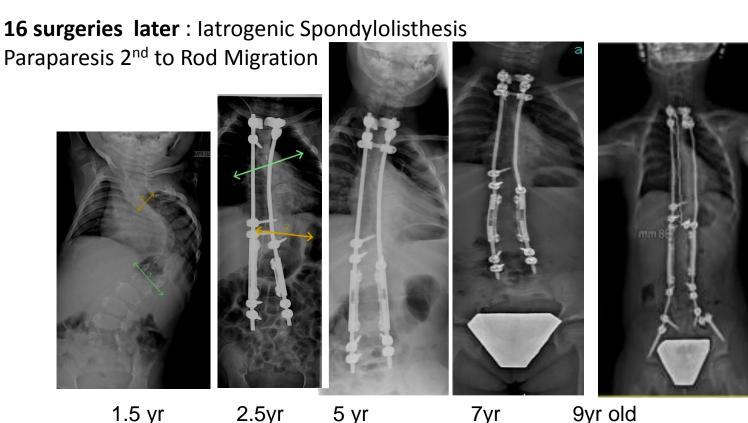
DepuySynthes Spine:

AO Foundation:

Indirect Conflicts

AO Foundation:

Prior Consultant for the development of New Guided growth implants
No Royalties
PI international multicenter
study Modern Luque Trolley system


Institutional Research and Fellowship Support

IMPLANT IS CE marked but is NOT FDA APPROVED

Background

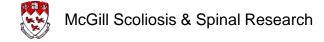
Current Treatment options for EOS: Dual Growing Rods, Rib based distraction, Magnetic Rods **achieve spinal growth** however they **continue** to have **a high complications rate**, a high rate of planned and unplanned surgeries.

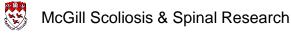
Background

Segmental fixation Every level Sublaminar wires Correction relied on Binding Lamina to rod

Non fusion Fixation was relying of wire Rods would migrate

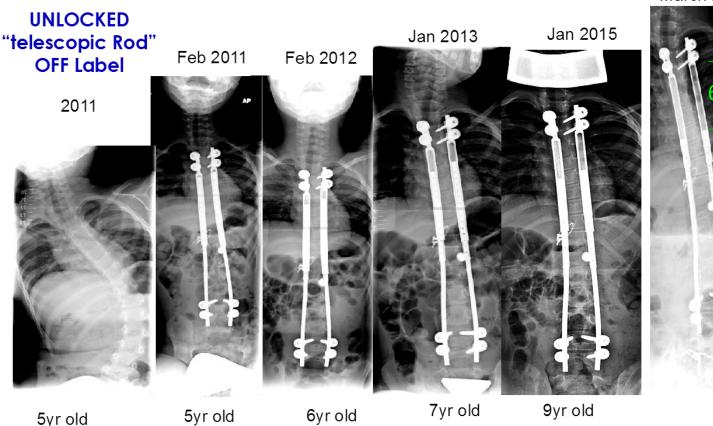
"Loose" construct no solid anchor no rotational control Significant residual deformity Many Issues leading to poor outcomes


Spontaneous fusion


Implant failures

Deformity progression

Luqué ER, (1977) Ortho Trans 1:37-38.



SYMPOSIUM: EARLY ONSET SCOLIOSIS

Surgical Technique

Modern Luqué Trolley, a Self-growing Rod Technique

March 2018

Advantages

- Avoiding repetitive surgeries
 Institutionalizing the children
 Repetitive Anesthesia at early age
 Decrease risk of infection
- Avoid overloading the spine
 Leading to iatrogenic
 sagittal deformities
- 3. Allow some motion

Minimize law of diminishing return

No distraction purely self guided growth : 6 cm over 7 yrs

* Clin Orthop Relat Res (2011) 469:1356-1367

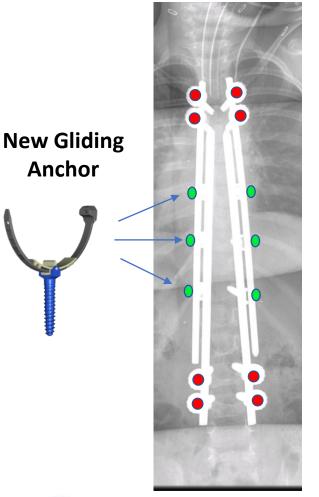
McGill Scoliosis & Spinal Research

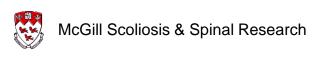
Surgical Technique

Modern Luque Trolley

New Gliding spinal implants & new surgical technique to address specific short comings (complications) of original Luque Trolley

Independent though Solid Prox / Distal anchor Fusions Four Rod Construct


Minimize Implant failures



Gliding Anchors Apical

Hôpitaux Shriners pour enfants® Shriners Hospitals for Children®

Modern Luque Trolley

New Gliding spinal implants & new surgical technique to address specific short comings (complications) of original Luque Trolley

- Independent though Solid
 Prox / Distal anchor Fusions
 Four Rod Construct
- Limited Apical fixation Gliding Anchors Maximal apical translation
- 3. Limited surgical dissection

Minimize Implant failures

Maximize correction to normalize forces across growth plates

Minimize Autofusion

- Gliding Anchors Apical
- Fix Anchors **Proximal & Distal**

Surgical Exposure:

Classic Subperiosteal dissection at the proximal and distal Fixed anchors. Formal Two level Fusion

Trans-muscular dissection for gliding anchors avoiding bone exposure. Minimizing risk of spontaneous fusion. Wiltse type approach.

Dissection : Longissimus & Iliocostalis

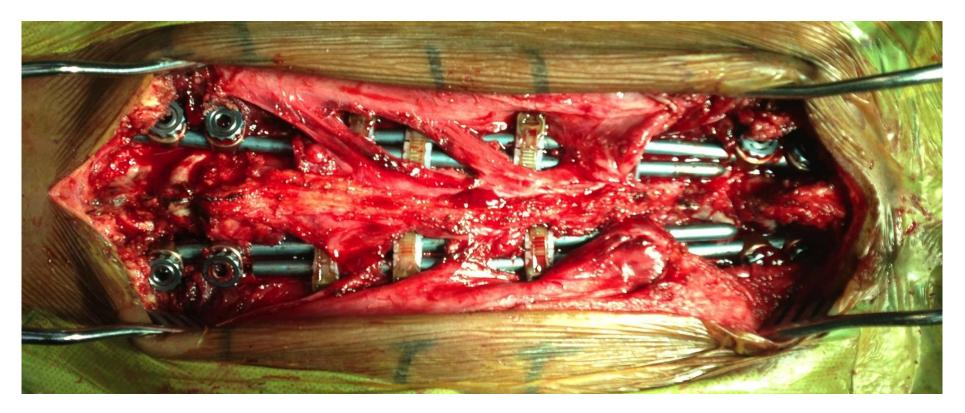
Multifidus & Spinalis

Apical Gliding screws: inserted transmuscularly to minimize risk of auto fusion •

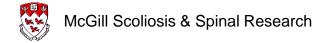
McGill Scoliosis & Spinal Research

Apical Post

Translation


For maxi

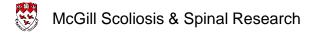
are Keep off the spine to minimize auto fusion •



Reduction
TechniqueTwo pairs of rod each fixed proximally and distally
that overlap at across the apex. Cantilever and Rod
derotation maneuvers achieve deformity correction.

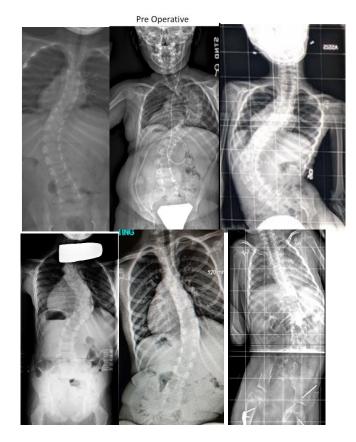
Hypothesis

Growth guidance technique using modern spinal implants with a engineer gliding anchor would decrease overall complication rate, planned and unplanned surgery in EOS Patient, while still allowing the spine to grow


Methodology

Retrospectively study on patients that underwent Modern Luque Trolley Construct with a minimum of 2 year follow up. Clinical & Radiological data as collected, complications, growth T1-T12, T1-S1 reoperations

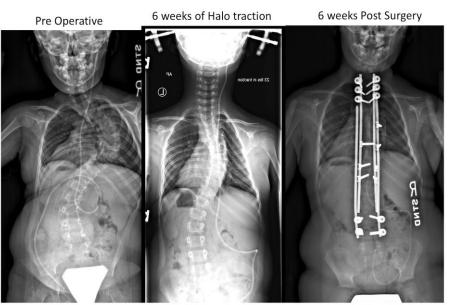
Indication


Hôpitaux Shriners pour enfants* Shriners Hospitals for Children*

- Skeletally immature < 10 yrs or Open TriRadiate Cart
- Progressive deformity despite failed casting or bracing
 - All EOS etiologies
 - Expected deformity > 50 degrees

Results Canadian Cohort Special access – three institutions

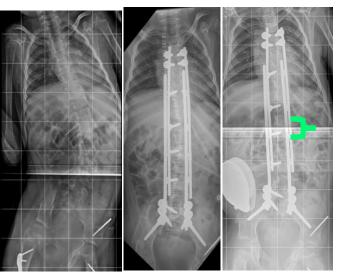
Demographics		
Sinnce 1 st January 2015	n= 25	
Trolley cases than 2yr F/U	N= 10	
AGE (range)	8,4 y,m ([°] 5+7 - 14+5)	
Gender	5 F 5 M	
Etiology	2 Idiopathic4 Neuromuscular4 Syndromic	
Avereage F/U (range)	28 months (24 – 35)	
Segments Spanned	10 levels (8 – 13)	



Results

Deformity Correction

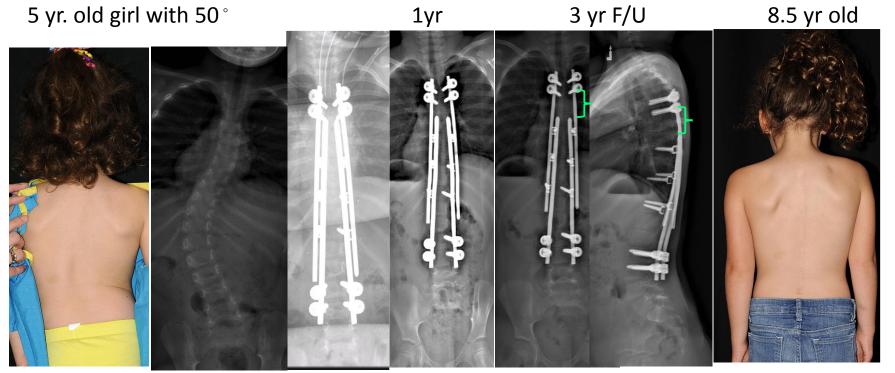
Preop Cobb	68 °	(47°-93°)	% correction
Post Op Cobb	26 °	(3° - 42°)	61 % (90% - 22%)
Last F/U Cobb	31 °	(4°-52°)	55 % (92% - 14%)



Av. 2.5 degrees/year

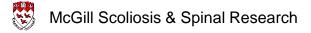
- 8° /yr ie additional correction + 10° /yr ie Cobb progression

Immediate Cobb Correction correlate with implant density / curve flexibility


Pre Op Post Op 2 yr Post Op 8 yr old Functional spastic Diplegic grew 2 cm over two yr.

Results

Growth

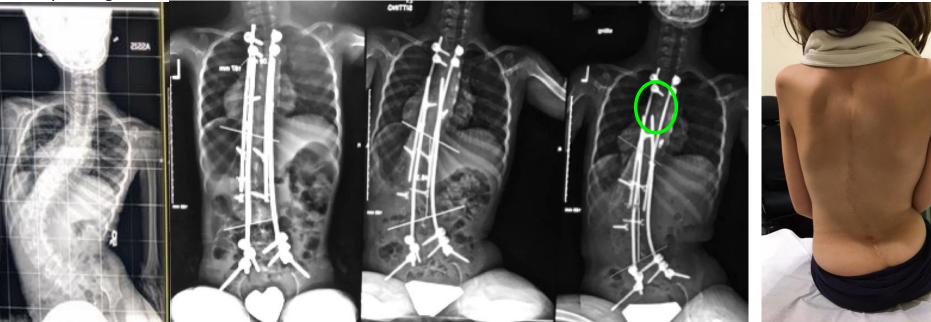

Ave. growth / years / per vertebra	0.62 mm	(0.1 – 1 mm)
Ave. T1-T12 spinal height gain post OP	2.9 cm	(1.2 – 4 cm)
Ave. T1-S1 spinal height gain Post Op	4.4 cm	(1.8 – 5.8 cm)

Overall growth: 65% of Expected Growth

Hôpitaux Shriners pour enfants* Shriners Hospitals for Children* **3yr Post Op no revision nor lengthening surgery**. The spine has grown 4 cm across the 10 instrumented vertebra representing 114% of expected growth Demiglio calculation (3.5 yr X 10 vertebral X 1 mm = 35mm

Courtesy: Dr Ron Elhawary

10.5 yr. old girl


Results

Poor Outcome: < 50% expected growth

3 pt. – Large Residual deformity > 20° – Curve Progression - poor growth

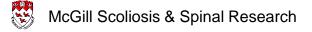
68° (47°-93°) % correction	
26° (3°-42°) 61% (90%-22%)	
31° (4°- 52 °) 55 % (92% - 14%)	
2.3° (-8° - 25 °)	
0.62 mm (0.1 – 1 mm)	
	26° $(3^{\circ} - 42^{\circ})$ 61% $(90\% - 22\%)$ 31° $(4^{\circ}-52^{\circ})$ 55% $(92\% - 14\%)$ 2.3° $(-8^{\circ} - 25^{\circ})$

7 yr. old girl

58% of expected growth

Results

Complications



Complications	N= 3 in two patients
1 prominent hardware	Revision surgery
2 Superficial Wound infection	PO antibiotics

Post Op – as patient bended forward distal rod was prominent. Revision surgery consisted of adding a set of gliding screw one level distal

Discussion:

Limitation: Obvious short Follow up with few patients

Growth guidance:

WORKS BUT IS NOT for all EOS It Can control curve progression while allowing spinal growth
Decreases / avoid repetitive surgeries / Interventions
Overall growth may be less - 65% of expected
Overall has Less complications

Patient Selection is Key

– intervene earlier when curve are still flexible ?

Maximal correction provides better growth and less curve regression

THANK YOU

Growth Guidance:

Conceptually to successfully achieve optimal growth guidance:

- normalizing the forces across all the vertebral growth plate. Maximal Deformity correction Apical control is mandatory.
- One wants a semi-constrained system allowing for motion minimizing auto fusion
- No excessive forces applied To minimize junctional iatrogenic kyphosis or implant dislodgement - inherent spinal growth drives length
- Harmonious sagittal plane allowing growth to occur through out the spine

Guided Growth

Apical Translation

