

Syndromic Cervical Spine

Richard C.E. Anderson, MD

12th Annual ICEOS Meeting Lisbon, Portugal November 15-16, 2018

 I could not bring myself to present a book report summarizing > 200 syndromic skeletal dysplasias affecting the cervical spine

TABLE 235-2 Congenital Abnormalities Affecting the Subaxial Cervical Spine

7

Disorder(s)	Spinal Pathologic Findings	Additional Findings	Radiographic Appearance
Klippel-Feil syndrome and Klippel-Feil variant	Cervical fusion at any level(s), ¹⁷ adjacent instability ¹⁸ ; occipitalization of the atlas ¹⁹	Classic triad: short neck, low hairline, and limited neck mobility due to congenital cervical spine fusion ¹⁷ ; Chiari I malformations ¹⁹	Abnormal bony architecture, with normal bone quality ¹⁹
VATER/VACTERL syndrome	Hypoplastic vertebrae, or hemivertebra	Vertebral anomalies, anal atresia, cardiac abnormalities, tracheoesophageal fistula, esophageal atresia, renal and radial dysplasia ²⁰	Hypoplastic vertebrae may be evident on chest radiograph
Down's syndrome (trisomy 13)	Occipitoatlantal subluxation(40%-50%), atlantoaxial subluxation (10%-30%) ¹¹²⁻¹¹⁶ ; rarely, subaxial instability ^{117,118}	Intellectual disability; characteristic facies; single palmar crease	Vertebral subluxation
Neurofibromatosis type 1 (NF1)	Progressive cervical kyphosis—extensive surgical reconstruction may be necessary ¹¹⁹	Neurofibromas; café-au-lait spots; axillary or inguinal freckles; optic nerve glioma; Lisch nodules; long-bone abnormalities	Scalloping of the vertebral column; paraspinal neurofibromas; expansion of the foramina, remodeling of the facet joints ¹¹⁹
Achondroplasia	Spinal stenosis greater at foramen magnum than at subaxial cervical spine or thoracolumbar spine ¹²⁰⁻¹²²	Most common form of dwarfism; characterized by disproportionate shortening of the proximal ends of limbs relative to the trunk ¹²⁰⁻¹²²	Spinal stenosis
Goldenhar's syndrome (oculoauriculovertebral dysplasia)	Vertebral hypoplasia; failure of segmentation (usually, cervical spine at C3-C4); failure of vertebral formation (thoracolumbar spine) ^{123,124}	Clinically heterogeneous constellation of symptoms characterized by spinal defects, hemifacial microsomia, and epidermoid appendages as well as craniofacial, cardiac, renal, gastrointestinal, and ophthalmic abnormalities	Vertebral hypoplasia
Kniest's syndrome	Osteopenia; atlantoaxial instability; odontoid hypoplasia; cervical hypoplasia and instability; kyphoscoliosis of the thoracolumbar spine ¹²⁵⁻¹²⁹	Characterized by abnormal facies as well as large, stiff joints with contractures ¹²⁵⁻¹²⁹	Osteopenic vertebral bodies
Morquio's syndrome	Atlantoaxial subluxation with cord compression; odontoid dysplasia ¹³⁰⁻¹³³	Cardiopulmonary and neurological complications; often does not manifest until 2-6 vr of age ¹³⁰⁻¹³³	Subluxation ±cord compression
Osteogenesis imperfecta	Pathologic fractures; type IV associated with craniovertebral junction abnormalities ^{134,135}	Type I mild, no long bone deformities; type II most severe, results in perinatal death due to in utero fractures; type III most severe form in patients who survive; type IV associated with moderate bone deformities and variable short stature ^{134,135}	Pathologic fractures
Larsen's syndrome	Hypoplastic vertebral bodies, dysraphism, hemivertebrae, wedged vertebrae, and midcervical subluxation; progressive kyphosis with progressive instability, myelopathy, and further segmental weakness ¹³⁶⁻¹⁴⁴	Commonly associated with knee and hip dislocation, flattened facies, and cervical kyphosis ¹³⁶⁻¹⁴⁴	Hypoplastic vertebral bodies, wedged vertebrae, subluxation, kyphosis
Spondyloepiphyseal and other skeletal dysplasias	Atlantoaxial instability, odontoid hypoplasia with cord compression, myelopathy ^{145,146}	Short-trunk disproportionate dwarfism ¹⁴⁵	Odontoid hypoplasia or os odontoideum

VATER/VACTERL, vertebral anomalies, anal atresia, cardiac defects, tracheoesophageal fistula and/or esophageal atresia, renal and radial anomalies, and limb defects.

are. Lead.

Clinical pearl 1: Stall

- As long as possible
- Most cases of deformity/instability picked up incidentally or via screening
- Bracing allows moderate reduction, stability, and time for growth
- Permits eventual stabilization with standard rigid internal fixation systems

Clinical pearl 1: Stall

10	2.4	8.5	F		C4	118	Diastrophic dysplasia
11	0.5	4.3	М	×	C3	56	Conradi syndrome
12	0.8	6.4	М		C5	78	Larsen syndrome
13	1.0	8.8	М	×	C5	130	Larsen syndrome
14	18.3	51.1	F		C5	62	Type 1 neurofibromatosis
15	1.2	32.3	F		C4	87	Larsen syndrome
16	1.4	9.8	М		C4	30	Larsen syndrome
17	3.7	16.0	М		C5	40	Larsen syndrome
18	1.5	9.4	М		C5	41	Larsen syndrome
19	3.3	14.4	F		C5	108	Larsen syndrome
20	1.7	8.8	М	×	C4	37	Conradi syndrome
21	2.9	12.0	F	×	C6	18	Type 1 neurofibromatosis
22	12.4	44.6	F		C6	58	Gorham's disease
23	2.7	13.0	М		C4	90	Larsen syndrome
24	12.4	33.6	М	×	C4	49	Larsen syndrome

Martus et al. Spine 2011

Clinical pearl 1: Stall

- 12/15 (80%) cases </= 3 y.o.; 6/15 (40%) </= 1.5 y.o.
- No rigid instrumentation used (wires/halo)
- Major complications in 9/15 (60%) of cases (quadriplegia, pseudo, etc)

Martus et al. Spine 2011

- Painful and barbaric for surgeons, patients, and families, but it works
- Can be done at any age
- Minimizes the chances of needing an anterior approach
- Safe: Permits assessment of neurological exam during reduction
- SSEPs/MEPs may not be monitorable in some cases

Clinical pearl 2: Use traction

• No monitorable MEPs or SSEPs at baseline!

- More familiar approach with less risk
- Primarily involve kyphosis or swan neck deformities
- Most require occipital-thoracic instrumentation for adequate deformity correction
- Commercially available anterior instrumentation systems difficult in kids < 6-8 y.o.; Hand/OMF systems provide limited biomechanical strength
- In many cases (but not all), posterior alone will be sufficient

Clinical pearl 3: Start posterior

Fargen et al. JNS:Peds 2011

COLUMBIA UNIVERSITY

MEDICAL CENTER

- Fixation into occipital keel and thoracic pedicle screws often necessary
- Instability may not exist throughout entire cervical spine
- Must consider this at initial operation
- Disconnect above and below after solid fusion achieved where needed

COLUMBIA UNIVERSITY

Medical Center

- Multicenter study investigating occipital-cervical-thoracic instrumentation and fusion in pediatric patients
- 13 syndromic patients with variety of etiologies
- Combination of anterior/posterior approaches
- 11/13 with preserved or improved neurological function in short term followup (mean 2.5 years)
 - Longer term follow up: nearly 50% have required revision surgery

Future directions

- Need to do better with long constructs in young children
- Restricted growth and head
 movement
- VEPTR, MAGEC, other growing constructs too large for cervical spine
- Modified Shilla system?
- We need to think outside this galaxy...

Future directions

And let these kids dance!

Thank you!

- Down syndromeKniest's syndrome
- Morquio's syndrome
- Spondyloepiphyseal dysplasia
 Klippel-Feil
- •VACTERL
- •Larsen's syndrome
- •Achondroplasia
- Osteogenesis imperfecta

Atlanto-occipital instability, atlantoaxial instability, rarely subaxial instability

Atlantoaxial instability, odontoid and cervical hypoplasia and instability

Atlantoaxial subluxation, odontoid dysplasia

Atlantoaxial subluxation, odontoid dysplasia

Cervical fusion at any level, adjacent instability, occipitalization of the atlas

Hypoplastic or hemivertebra

Hypoplastic or hemivertebra, wedged vertebra and midcervcal subluxation, progressive kyphosis

Spinal stenosis greater at the foramen magnum than subaxial cervical spine

Pathologic fracture, type IV associated with craniovertebral junction instability

The syndromic cervical spine: Occiput-C1

• Atlanto-occipital instability

- Seen in 40-50% of Down syndrome patients (flattened C1 articular "cup")
- Osteogenesis imperfecta
- Occipitalization of the atlas
 - Klippel-Feil
 - Goldnhar syndrome
- Foramen magnum stenosis
 - Achondroplasia
 - Common radiographic finding (60-70%), but less common clinical manifestations(10-35%)

The syndromic cervical spine: C1-C2

Atlantoaxial instability

MEDICAL CENTER

COLUMBIA UNIVERSITY

- 10-30% of patients with Down syndrome
- Kniest's and Morquio's (42-90%) syndrome
- Spondyloepiphyseal dysplasia
- Odontoid dysplasia and hypoplasia
 - Kniest's and Morquio's syndrome
 - Spondyloepiphyseal dysplasia

The syndromic cervical spine: subaxial cervical spine

- Subaxial stenosis
 - Achondroplasia
- Aberrant fusion and adjacent instability
 - Klippel-Feil
- Hypoplastic and hemiverteba
 - VACTERL
 - Larsen's syndrome
- Pathologic fractures
 - Osteogenesis imperfecta

The syndromic cervical spine: Diagnosis

- A-P, lateral and open mouth Xray
- CT scan with 3D reconstruction
- Cervical MRI
- Occiput-C1
 - CCI
- •C1-2
 - ADI, PADI
- Subaxial
 - Flexion-Extension films to assess for reducibility when indicated

