Spinal MRI Utilization in Patients with Early-Onset Scoliosis – Review of a Multi-Center Database

Anna McClung, Brendan A. Williams, Suken A. Shah, Laurel C. Blakemore, Jeff Pawelek, Paul D. Sponseller, Stefan Parent, John B. Emans, Peter F. Sturm, Burt Yaszay, Behrooz A. Akbarnia, and the Growing Spine Study Group

Background

 Spinal MRI is commonly included in the evaluation of EOS due to higher frequencies of intraspinal abnormalities reported in this population

 Actual provider utilization of this imaging modality across the EOS spectrum has not been well described

Objectives

- To report patterns of MRI utilization in patients with EOS across an international cohort of centers regularly treating patients with this condition
- 2) To determine if patient-related variables are associated with MRI use prior to treatment in EOS

Methods

Design: Retrospective review of a prospective, multi-center database

Inclusion criteria: Idiopathic, Congenital, Neuromuscular or Syndromic EOS

Exclusion criteria:

- Incomplete or unverifiable data regarding pre-treatment imaging
- Structural deformities secondary to tumor or infection

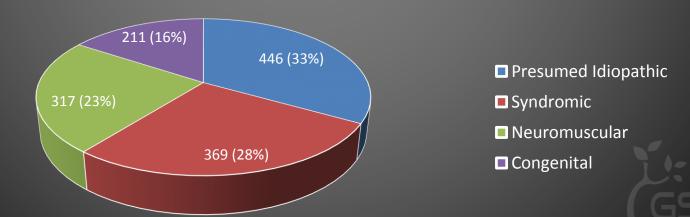
Independent variables:

- Patient demographics: Age, race/ethnicity
- Etiology of EOS
- Major curve size (Degrees)
- Type of treatment (Operative or Non-operative)

Dependent variable: Pre-treatment MRI (MRI Obtained or No MRI Obtained)

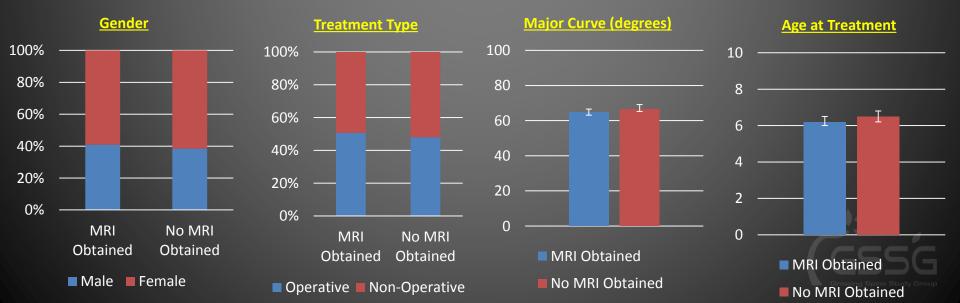
Statistical Analysis

 Demographic, clinical and radiographic characteristics summarized with descriptive statistics


• Univariate analyses were performed using Pearson's chi-square (χ^2) for categorical variables and two-tailed student's t-test for continuous variables

 Multivariate logistic regression was performed to identify significant predictors of MRI utilization

Cohort Demographics


- 1,343 (70%) of total registry subjects managed at 21 institutions by 50 surgeons met study criteria
- Age at treatment: 6.3 +/- 3.5 years
- Major curve prior to treatment: 66 +/- 25 degrees
- Treatment type was surgical in 75% of patients

Patient Etiology

MRI Utilization

- MRI was obtained in 62% (836/1343) of patients at a mean age of 5.8 ± 4.0 years.
- MRI Utilization showed no association (p>0.05) with gender, treatment type, major curve size and age at treatment

MRI Utilization - By Etiology

Univariate Analysis

Etiology	MRI Obtained n = 836 (62%	No MRI Obtained n = 507 (38%)	P - value	
Presumed Idiopathic	314 (37.6%)	132 (26.0%)		
Syndromic	232 (27.8%)	137 (27.0%)	D < 0.001	
Neuromuscular	134 (16.0%)	183 (36.1%)	P < 0.001	
Congenital	156 (18.7%)	55 (10.9%)		

Multivariate Regression

Etiology	Odd Ratio	95% CI	Adjusted OR*	95% CI
Syndromic	1		1	
Neuromuscular	0.4	(0.32, 0.59)	0.4	(0.31, 0.57)
Idiopathic	1.4	(1.05, 1.88)	1.4	(1.03, 1.87)
Congenital	1.7	(1.15, 2.43)	1.6	(1.09, 2.31)

MRI Utilization - By Race/Ethnicity

Univariate Analysis

Race/Ethnicity	MRI Obtained n = 836 (62%	No MRI Obtained n = 507 (38%)	P - value
White/Caucasian	524 (62.7%)	324 (63.9%)	
African/African-American	112 (13.4%)	61 (12.0%)	
Hispanic	72 (8.6%)	29 (5.7%)	P < 0.05
Asian/Asian-American	37 (4.4%)	10 (2.0%)	
Other/Unspecified	91 (11%)	83 (16.4%)	

Multivariate Regression

Race/Ethnicity	Odd Ratio	95% CI	Adjusted OR*	95% CI
White/Caucasian	1		1	
African/African-American	1.1	(0.81, 1.60)	1.2	(0.81, 1.65)
Hispanic	1.5	(0.98, 2.41)	1.7	(1.07, 2.73)
Asian/Asian-American	2.3	(1.12, 4.66)	2.4	(1.13, 4.88)
Other/Unspecified	0.7	(0.49, 0.94)	0.7	(0.53, 1.05)

Discussion

 Two-thirds of EOS patients across a international, multicenter cohort of treating centers underwent spinal MRI prior to intervention

- MRIs were utilized more commonly among presumed Idiopathic and Congenital etiologies and least commonly among Neuromuscular etiologies
- MRI use appeared greatest in Asian/Asian-American populations

Limitations

 Registry studies rely upon the accuracy and consistency of data collected at participating centers

 Other factors potentially influencing MRI decision-making (e.g. physical exam findings) could not be examined

References

- 1. Rajasekaran S, Kamath V, Kiran R, Shetty AP. Intraspinal anomalies in scoliosis: An MRI analysis of 177 consecutive scoliosis patients. Indian J Orthop. 2010;44(1):57-63.
- 2. Pereira EAC, Oxenham M, Lam KS. Intraspinal anomalies in early-onset idiopathic scoliosis. Bone and Joint Journal. 2017;99-B(6):829-833.
- 3. Mohanty S, Kumar N. Patterns of presentation of congenital scoliosis. J Orthop Surg. 2000;8(2):33-37.
- 4. Gupta N, S R, G B, Shetty A. Vertebral and Intraspinal Anomalies in Indian Population with Congenital Scoliosis: A Study of 119 Consecutive Patients. Asian Spine J. 2016;10(2):276-281.
- 5. Zhang W, Sha S, Xu L, Liu Z, Qiu Y, Zhu Z. The prevalence of intraspinal anomalies in infantile and juvenile patients with "presumed idiopathic" scoliosis: a MRI-based analysis of 504 patients. BMC Musculoskelet Disord. 2016;17(1):189.
- 6. Inoue M, Minami S, Nakata Y, et al. Preoperative MRI analysis of patients with idiopathic scoliosis: a prospective study. Spine . 2005;30(1):108-114.
- 7. Koç T, Lam KS, Webb JK. Are intraspinal anomalies in early onset idiopathic scoliosis as common as once thought? A two centre United Kingdom study. Eur Spine J. 2013;22(6):1250-1254.
- 8. Nakahara D, Yonezawa I, Kobanawa K, et al. Magnetic resonance imaging evaluation of patients with idiopathic scoliosis: a prospective study of four hundred seventy-two outpatients. Spine . 2011;36(7):E482-E485.
- 9. Dobbs MB, Lenke LG, Szymanski D a., et al. Prevalence of neural axis abnormalities in patients with infantile idiopathic scoliosis. J Bone Joint Surg Am. 2002;84-A(12):2230-2234.
- 10. Evans SC, Edgar M a., Hall-Craggs MA, Powell MP, Taylor B a., Noordeen HH. MRI of "idiopathic" juvenile scoliosis. A prospective study. J Bone Joint Surg Br. 1996;78(2):314-317.
- 11. Pahys JM, Samdani AF, Betz RR. Intraspinal Anomalies in Infantile Idiopathic Scoliosis. Spine . 2009;34(12):E434-E438.
- 12. Williams BA, Matsumoto H, McCalla DJ, et al. Development and initial validation of the Classification of Early-Onset Scoliosis (C-EOS). J Bone Joint Surg Am. 2014;96(16):1359-1367.
- 13. Gupta P, Lenke LG, Bridwell KH. Incidence of Neural Axis Abnormalities in Infantile and Juvenile Patients With Spinal Deformity. Spine . 1998;23(2):206-210.
- 14. Lewonowski K, King JD, Nelson MD. Routine use of magnetic resonance imaging in idiopathic scoliosis patients less than eleven years of age. Spine . 1992;17(6 Suppl):S109-S116.
- 15. Fribourg D, Delgado E. Occult spinal cord abnormalities in children referred for orthopedic complaints. Am J Orthop . 2004;33(1):18-25.
- 16. Basu PS, Elsebaie H, Noordeen MHH. Congenital spinal deformity: a comprehensive assessment at presentation. Spine . 2002;27(20):2255-2259.
- 17. Suh SW, Sarwark JF, Vora A, Huang BK. Evaluating congenital spine deformities for intraspinal anomalies with magnetic resonance imaging. J Pediatr Orthop. 2001;21(4):525-531.
- 18. Prahinski JR, Polly DW Jr, McHale KA, Ellenbogen RG. Occult intraspinal anomalies in congenital scoliosis. J Pediatr Orthop. 2000;20(1):59-63.
- 19. Belmont PJ Jr, Kuklo TR, Taylor KF, Freedman BA, Prahinski JR, Kruse RW. Intraspinal anomalies associated with isolated congenital hemivertebra: the role of routine magnetic resonance imaging. J Bone Joint Surg Am. 2004;86-A(8):1704-1710.
- 20. Shen J, Wang Z, Liu J, Xue X, Qiu G. Abnormalities associated with congenital scoliosis: a retrospective study of 226 Chinese surgical cases. Spine . 2013;38(10):814-818.
- 21. Liu Y-T, Guo L-L, Tian Z, et al. A retrospective study of congenital scoliosis and associated cardiac and intraspinal abnormities in a Chinese population. Eur Spine J. 2011;20(12):2111-2114.
- 22. Ghandhari H, Tari HV, Ameri E, Safari MB, Fouladi DF. Vertebral, rib, and intraspinal anomalies in congenital scoliosis: a study on 202 Caucasians. Eur Spine J. 2015;24(7):1510-1521.
- 23. Xue X, Shen J, Zhang J, et al. Rib deformities in congenital scoliosis. Spine . 2013;38(26):E1656-E1661.