CT Lung Volume in EOS Clinical Application

Charles E Johnston MD Anna McClung, RN TSRHC, Dallas Tx. ICEOS Istanbul '09

CT lung volumes

convex

Lung vol 860 cc

Best method to evaluate <u>anatomic</u> results of treatment, especially in patients too young to perform traditional PFT (<u>physiologic</u> measure of outcome)

Methods

22 patients mean age
33.6 mo (5-74)
@ initial scan

(usually w/ MRI)

 F/u scan mean 28 mo later (IRB protocol
 = q 2 yr)

Frederick R. Long, MD Robert G. Castile, MD Alan S. Brody, MD Mark J. Hogan, MD Robert L. Flucke, RTT David A. Filbrun, RTT Karen S. McCoy, MD

Index terms:

Children, respiratory system Computed tomography (CT), in infants and children, 60.12118 Lung, CT, 60.12118 Lung, function

Radiology 1999; 212:588-593

Lungs in Infants and Young Children: Improved Thin-Section CT with a Noninvasive Controlled-Ventilation Technique—Initial Experience¹

- 11 patients surgical rx pre & postop
- 11 patients nonop
- Cobb angle (coronal & sagittal)
- Thoracic height & width, pelvic width

Outcomes

 Determine Th height & width
 %tiles
 (Emans et al, Dimeglio)

Prediction of Thoracic Dimensions and Spine Length Based on Individual Pelvic Dimensions in Children and Adolescents: An Age-Independent, Individualized Standard for Evaluation of Outcome in Early Onset Spinal Deformity

Emans, John B. MD*; Ciarlo, Michelle BS*; Callahan, Michael MD†; Zurakowski, David PhD*

Dimeglio

Absolute & %tile CT volume

(inspiration/expiration status unknown) Gallogly, Smith

Results

- Initial vol Convex > concave
 14 vs 8
- PW correlated with initial Th Ht (r²=.64, p<.001) and initial CTvol (r²=.45,p<.001)
- <u>No correlation</u> between CT volume change (abs. or %) and
 - time between studies
 - $\Delta Cobb$
 - Δ Th Ht or Th Wd

Entire group 22 pts.

Results - operative cases only

- Δ Th Ht & Δ Th Wd correlated with Δ CTvol (r²=.53-.63, p=.001-.008)
- Δ Th Ht operative > non-op (p<.01) when
- Many outliers

% CT vol Δ unchanged or -ve 2/11 operative and 3/11 non-op ? Reliability/reproducibility of CVCT method

? Accuracy of xray calibration

Results								
	operative		nonop					
Init. Cobb	<mark>70</mark> º (25-95)		<mark>48</mark> ° (17-90)					
f/u Cobb	57º (28-116)		47º (13-70)					
Init. T1-12 (cm)	11.8	(3.9-15.4)	13.2	(10.4-17.1)				
f/u T1-12 (cm) -	14.5	(6.1-20.1)	14.2	(10.9-10.2)				
Init.T6 wid (cm)	13.4	(9.9-16.6)	13.4	(9.9-16.5)				
f/u T6 wid (cm) -	▶ 14 ((10-18.4)	13.8	(10.6-16.1)				
Init CTvol (ml)	637	(201-1079)	775	(440-1266)				
f/u CTvol (ml) →	883 (444-1572)	1027	(550-2020)				

Results

- 8/11 operative cases had improved Cobb angle (not all had distraction instr) vs 5/11 non-op
- 11/11 operative cases experienced T1-12 ht increase 0.2-4.9 cm
- 2/11 non-op cases had decrease T1-12 ht
- 9/11 operative cases had CT volume increase
 vs. 8/11 non-op
- Mean 28 mos between scans (all \geq 2 yr)

Non-op \rightarrow Operative

T1-12 = 11.3 cm R 379 L 415 = 794

T1-12= 15.4 R 679 L 801 = 1480

CT volume - Gallogly

.....Observation continues

CT volume - Summary

- Objective measure to determine if thorax is growing or has been enlarged by rx
- Serial data best utilized to control rx in individual patient
- Xray calibration
- CVCT reproducibility
- Small cohort
- Mix of rx

Inability to show significant ∆'s over time & with rx

Final note

Considering recent PFT findings in postop Veptr patients, anatomic volume measurement and documented increase with treatment may be misleading or less important outcome measure

	No.	Pre-VEPTR	Post-VEPTR	Р
FVC	53	0.94 ± 0.07	0.97 ± 0.06	0.107
FVC%	53	61.5 ± 3.6	54.3 ± 2.5	< 0.001
FEV1	53	0.83 ± 0.05	0.87 ± 0.06	0.189
FEV1%	53	58.9 ± 3.7	52.1 ± 2.4	0.003
FEV1/FVC	53	89.1 ± 1.2	89.5 ± 1.1	1.000
TLC	9	1.92 ± 0.16	2.10 ± 0.15	0.111
TLC%	9	66.2 ± 4.8	65.6 ± 3.7	0.809
RV	10	0.52 ± 0.09	0.68 ± 0.10	0.029
RV%	10	79.8 ± 13.3	101.1 ± 16.6	0.083
RV/TLC	10	35.2 ± 2.5	41.5 ± 3.8	0.012
Cobb angle, degrees	40	57.9 ± 4.5	46.5 ± 3.6	< 0.001

Pre-VEPTR and post-VEPTR insertion data for FVC, FEV₁, TLC, and RV, as volume and as percent predicted, and for FEV_1/FVC , RV/TLC, and Cobb angle. Values are expressed as mean \pm SEM.

> Mayer, Redding JPO 1/09

