Results of Hemivertebra Excision for the Treatment of Congenital Scoliosis: A Multicenter Retrospective Review

Burt Yaszay, MD; Michael O'Brien, MD; Peter O Newton, MD; Randal Betz, MD; Harry Shufflebarger, MD; Baron Lonner, MD; Lynn Letko, MD; Juergan Harms, Prof Dr. Med; Alvin Crawford, MD; Suken Shah, MD; Paul Sponseller, MD; Michelle Marks, PT, MA

Financial Disclosures

Burt Yaszay (a,e) DePuy Spine; (a, b) Ellipse; (a) Kinetic Concepts, Inc.

Michael O'Brien (a,b,d) DePuy Spine; (b,d) Osteotech

Peter O Newton (a,b,e) DePuy Spine; (a) Axial Biotech; (c) NuVasive Randal Betz (a,b,e) DePuy Spine; (b,e) Medtronic; (a,b,e) Synthes;

(b,e)Osteotech; (e) Spineguard; (b) Orthovita; (b,c) Orthocon

Harry Shufflebarger (a,b,e) DePuy Spine

Baron Lonner (a,b,d) DePuy Spine; (a,c) Axial Biotech; (d) Stryker; (c) K2M;

(c) Paradigm Spine

Lynn Letko (a) DePuy Spine

Prof. Juergan Harms

Alvin Crawford (a,b,e) DePuy Spine

Suken Shah (a,b,e) DePuy Spine; (a) Axial Biotech

Paul Sponseller (a,b,e) DePuy Spine; (e) Globus

Michelle Marks none

a. Grants/Research
Support

- b. Consultant
- c. Stock/Shareholder
- d. Speakers' Bureau
- e. Other Financial Support

This study was supported by a research grant awarded to the Harms Study Group Foundation by DePuy Spine.

Introduction

- Congenital Scoliosis
 - Progressive deformity
 - Hemivertebra common
- Surgical Options
 - In-situ fusion
 - Hemi-epiphysiodesis
 - Instrumented correction
 - Hemivertebra excision

Purpose

 To evaluate the clinical and radiographic outcomes as well as complications following a hemivertebra (HV) excision.

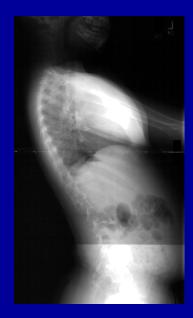
Methods

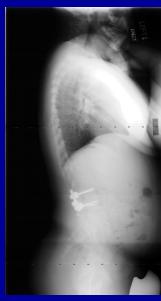
- Study design
 - Retrospective
 - Multi-center
- Inclusion Criteria
 - 1 or 2 HV
 - Surgical excision
 - 2 year f/u
 - Less than or equal of 21 years of age
- Clinical, radiographic, and Complication data recorded
- Statistics
 - ANOVA
 - Alpha p≤0.05

Clinical Results

- 42 patients (36 single HV, 6 double HV)
- Surgical Procedure
 - 33 posterior only vs. 9 anterior/posterior

Age (yrs)	5 ± 4
Fusion length (vertebra)	3 ± 2
EBL (cc)	455 ± 461
Operative time (min)	255 ± 89




Radiographic Results

	Pre-op	Post-op	% correction	
	(degrees)	(degrees)		
Coronal Cobb	35 ± 9	10 ± 10	73 ± 21	p<0.001
Sagittal Cobb	18 ± 21	14 ± 22		p=0.274

Clinical Results

Complication rate: 38%

	Patients
Infection	3
Neurologic	5 (1 post-op seizure)
Instrumentation	5
Other	2 deformity progression, 1 pseudoarthrosis, 1 C. difficile colitis

Neurologic Complications

- 4/42 patients → 10% incidence
- 2 patients
 - bilateral dysesthesias
 - Resolved at 2 days and 2 weeks post-op
- 2 patients (L3 and L5 HV)
 - Ipsilateral nerve root motor deficit
 - Resolved at 2 weeks and 10 months post-op

Results

Improved results with greater experience

	G3	Other sites	p value
N	17	25	
Coronal Correction	84±19%	50±25%	p<0.001
Fusion length	2 ± 1	5 ± 4	0.003
EBL (cc)	310 ± 232	602 ± 582	0.06
Operative time (min)	226 ± 48	282 ± 117	0.07
Complications	4 instrumentation, 1 other	2 infection, 4 neurologic, 1 instrumentation, 2 other	

Discussion

- Average age 5 yrs
 - Klemme et al. J Pediatr Orthop 2001 –19 mo
 - Callahan et al. *J Pediatr Orthop* 1997 –
 3 yrs 11 mo.
- High correction rate 73%
 - Ruf and Harms Spine 2003 69%
 - Shono et al. Spine 2001 64%
 - Bollini et al. JBJS Am 2006 64%

Discussion

- Overall complication rate 38%
 - Ruf and Harms Spine 2003 21%
- Neurologic complication rate 10%
 - All motor deficits were ipsilateral nerve root → resolved
 - Holte et al. JBJS Am 1995 7/37 pts with temporary nerve root lesions
- Greater experience → improved radiographic results with decreased complication rates

Conclusion

- HV excision in young patients can provide significant scoliosis correction, thereby preventing a progressive deformity as well as the development of compensatory curve
- HV is not without risks
- There appears to be a learning curve associated with HV excisions

