3rd ICEOS Istanbul, Turkey November 20-21, 2009

Myth vs. Truth:
Distraction Should Be Done
Every 6 Months With
Distraction-based Methods

George H. Thompson, MD
Director, Pediatric Orthopaedics
Rainbow Babies and Children's Hospital
Cleveland, Ohio

Disclosures

Unpaid Consultant – OrthoPediatrics

Co-Editor – Journal of Pediatric Orthopaedics (JPO)

Department receives support from numerous companies

Question

In growing rods, what is the best time interval in distraction / lengthening with respect to:

- Deformity correction
- Spinal growth
- Complications

Presumptive GSSG Evidence

Thompson GH, Akbarnia BA, et al. Spine 2005;30, 2039 – 2044

Yang J, et al. Paper # 4, 3rd ICEOS 2009

Wudbhav S, et al. Paper #15, 3rd ICEOS 2009

Bess S, et al. Submitted JBJS 2009

Study Centers

RBCH 1992 - 2004

- 53 young patients
 Single Isola rod
 SDCSD 1993 2002
- 45 young patients Dual Isola rods
- 3 different centers

Patients

Study Criteria

- Single or dual growing rod
- Definitive spinal fusion
- Minimum 2 years follow-up after final fusion

Patients – 28 patients

- 21 RBCH
- 7 SDCSD data base

Study Groups

- **Group 1 5 patients**
- Single Isola growing rod
- Short anterior & posterior apical fusion
 Group 2 16 patients
- Single Isola growing rod
- No apical fusion
- **Group 3 7 patients**
- Dual Isola growing rods
- No apical fusion

Clinical Results

Group	1	2	3
Gender (M:F)	2:3	6:10	1:6
Age (yrs)	7.0±2.9	8.7±1.9	6.9±3.9
> 10	0	7	1
5 – 9	4	9	4
< 5	1	0	2
Lengthenings	3.4±1.8	2.8±1.3	6.1±2.8

Radiographic Results

Group	1	2	3
Scoliosis (°)			
Preop initial	85±23	61±13	92±21
Postop initial	44±21	36±7	39±15
Preop final	77±20	55±15	33±16
Postop final	65±20	39±15	26±18

Group	1	2	3
Correction (%)			
Preop to postop			
initial	48±21	41±14	57±17
Postop initial to			
postop final	-47±11	-8±14	34±10
Preop initial to			
postop final	23±19	37±15	72±24

Radiographic Results

Group	1	2	3		
Length / Growth (cm)					
Elongation	3.8±2.8	3.9±4.9	5.9±1.5		
T1 – S1 / yr	-0.2±1.2	0.5±.95	1.04±.65		
(Postop initial to preop final)					
T1 – S1 / yr	0.3±1.02	1.04±.09	1.51±.58		
(Postop initial to postop final)					
Percent expected	25%	80%	130%		
Total (cm)	6.4±1.4	7.6±4.7	11.8±4.0		

Dimeglio A, Bonnel F 1990, Remaining Spinal Growth in Children

Conclusions

No definite evidence (myth) that distraction at 6 month intervals is ideal but frequent distractions (truth) appears to give best results with respect to:

- Spinal deformity correction
- Spinal growth ("driving the spine")
- Increased complications

