The Introduction of VEPTR Operations into Japan: The Report of First 33 patients.

Noriaki Kawakami, Taichi Tsuji, Toshiki Saito, Tetsuya Ohara, Ayato Nohara, Kazuyoshi Miyasaka, Michiyoshi Sato, Kenyu Ito, Koki Uno, Haruhisa Yanagida, Robert M Campbell

Dep. of Orthop & Spine Surg. Meijo Hospital Dept. of Orthop. Kobe Medical Center Dept. of Orthop. Hukuoka Children Hospital Children's Hospital of Philadelphia Pennsylvania USA

Expansion Thoracoplasty with VEPTR

Effective Procedure for TIS

Surgical Complications in VEPTR Surgery

Instrumentation-related

- Device migration
 Hardware prominence
 Device dislodgement
 Fracture of ribs, lamina
- Rod breakage

Infection

- Superficial
- •Deep

Pulmonary

- Atelectasis
- Pneumonia
- Pleural effusion
- Hemothorax
- Pneumothorax
- Respiratory failure

Neurological

- •Thoracic outlet syndrome
- Intercostal nerve irritationDecreased MEP

Skin

- •Skin slough
- •Decubitus
- Skin breakdown
- Upper-extremity
- dysfunction
- Death

Etc.

It is difficult to start VEPTR op. without guidance and supports from other departments.

Purpose

To report our learning curve of VEPTR operations and the experiences of the first 33 patients in Japan.

Chronological Table of VEPTR in Japan

Demographic Data (N=33)

Sex	Male 10, Female 23
Age at op.	6.0±1.5 y/o(3~8)
Height	98,7±10.3 cm (78~119)
BW	16.3±7.9 Kg(11~35)
F/U period	1.4±1.6 yrs. (0.3~ 6)

Congenital scoliosis + rib anomalies 18
 Myelomeningocele 6
 Spondylocostal Dysostosis 3
 SOTOS syndrome 2
 Others 4

Classification of TIS in 33 pts, (Thoracic Volume - Depletion Deformities)

Co-morbidities & Associated Abnormalities

Cleft palate

Inguinal hernia

TOF

Op. performed

Obstruction of duodenum

Chronic Respiratory failure (HOT - 3)

Tethered spinal cord (Lipomeningocele-2)

Previous Scoliosis Surgery (2)

Klippel-Feil Syndrome

Primary VEPTR Procedures

	26
	7
6	
1	
3	
24	
6	
	28
	6 1 3 24 6

Expansion & Replacement

- 9 times: 1
- 7 times: 1
- 6 times: 4
- 5 times: 1
- 4 times; 1
- 2 times: 3
- 1 time : 6

(Final op. 1)

Expansion: 61 times, Replacement: 6 pts

Comparisons of Operative Data

	All	1 st stage		2 nd stag	g 3re stage
Patients	33	8		11	14
EBL (ml) 21.9±18.7	60.4±57.4	102±	51.5	79.0±	66.0
Op. time (mins) 142±41.9	167 ± 50.4	197±5	1.7	177±4	7.5
ICU stays (day) 5.6±3.5	6.3±5.3	10.9±	7.7	4.0±2.	9
Preop. Cobb(°) 60.1±31.4	75.7	±31.5	89.9±	25.4	85.3±29.2
Postop. Cobb(27.9 ± 21.6 Diagnoses Preop. SAL(%) 81.1 \pm 12.7) 52.2 76.2±14.0	±25.8 CS	71.9±	CS	56.4±17.4 2 CS
Decton SAL (0/)	816+150		20	96 0 - 1	

Surgical Complications							
21/33 (63.6%)							
	1 st stage	2 nd stage	3 rd stage				
Intraop.	2	1	2				
	MEP drop-down Rib fracture	MEP drop-down	Atelectasis Rib fracture				
Postop.	7/8	7/11	6/14				
	87.5%	63.6%	42.9%				

Postop. Complications in Each Stage

2nd stage

1st stage

Respiratory Pleural effusion Flail chest Atelectasis Vocal cord polyp Implant-related Hook prominence VEPTR dislodgement Skin Stitch abscess Skin slough Neurological CSF leakage Psychological ICU syndrome

Respiratory Hemothorax Pnuemothorax Atelectasis Implant-related S-hook migration Shoulder imbalance Neurological CSF leakage Phrenic N paralysis Skin Skin slough

3rd stage

Respiratory Atelectasis Implant-related Shoulder imbalance Skin Skin slough Infection **Deep infection** UTI Psychological **ICU** syndrome Other Limited shoulder elevation

Conclusions

- During the learning curve, it was possible to decrease the occurrence of perioperative complications, the operative time, and intraoperative blood loss.
- Because of high complication rates of VEPTR operations, it was necessary to advance step by step in order to decrease complication rates.