Tethers and Growth Modulation: Update 2010

Peter O. Newton, MD

Rady Children's Hospital UCSD

Disclosures: DePuy Spine: Research, Consultancy, Royalties; Axial: Research; OREF: Research; Nuvasive: Stock

San Diego – Orthopaedics

Holy Grail of Spinal Deformity Correction

- Correct Scoliosis without Fusion
- Preserve Spinal Motion / Function
- Use the patient's growth potential to "power" the correction

"Relative Anterior Overgrowth"

- Too much anterior spine, rotates out of plane to "shorten" the anterior column
- Thoracic curves
- Primary driver of all
 3 planes of deformity

Strategies

- Slow anterior growth, especially on convex side
- Increase posterior growth, concave side
- Neurocentral synchondrosis manipulation

Neurocentral Synchondrosis Screws to Create and Correct Experimental Deformity: A Pilot Study Hong Zhang MD, Daniel J. Sucato MD, MS CORR, 2010

• 1 month old pig model

MiniPig Comparison of: Tether, Staple, Rod

Vertebral Staples

- Traditionally used for long bone correction
- Historical results in spine disappointing
- Advances in staple design
- Nitinol Alloy with shape memory properties

Pig: Nitinol staples

San Diego – Orthopaedics

25° 38° O° 22° C A 11ª 22* 30° Betz et al., Spine 2003 D

Betz, et al Data

- JIS or AIS
- Risser 0-1
- Curves 20-45 degrees
- Min 2 year follow up
- 28 of 29 patients

Stapling Results (2 yr FU)

	Improved > 10	No Change	Progressed >10
Thoracic	17 %	61 %	22 %
Curves < 35	N=3	N=11	N=4
Thoracic	12 %	12 %	75%
Curves > 35	N=1	N=1	N=4
Lumbar	20 %	67%	13%
Curves	N=3	N=10	N=2

Over Correction

Spine Remains Flexible

 $\langle \rangle$

Eric Wall, MD Donita Austrow PhD

Pig Model

Eric Wall, MD Donita Austrow PhD

FDA Approved IDE:

- Lenke 1A, 1B Thoracic
- T3-L1
- Ages 10-15
- Risser 0, Open Triradiate
- Cobb 25°-40°
- Bone Age <13 girls, <15 boys

High Likelihood for Fusion

Eric Wall, MD Donita Austrow PhD

Flexible Implant?

- Tether
- Limit growth
- Allow motion except bending away from tether
- Preserve disc function/health

Clinical Application

Latest Porcine Study

- Twelve 7-month-old Yucatan mini-pigs
- Right sided double thoracotomy
- T8-T11 instrumented

Control vs. Tether Groups

Control group (n=6): Sham surgery with only screws

• Tether group (n=6):

- Tapered screw-staple design with a UHMWPE ribbon
- 6-month survival

Porcine Growth

Weight (kg)

Length (cm)

No significant differences in growth rate between the control and tether groups (p>0.73)

Deformity Creation

Coronal Cobb

Sagittal Cobb

Significant increase in the Coronal Cobb (p<0.001) and the Sagittal Cobb (p<0.01)

Computed Tomography

Control – 6 month post-op

Tether – 6 month post-op

3D CT Reconstruction

Tether – 6 month post-op

Axial Plane Deformity

Vertebral Body Rotation

3T Magnetic Resonance Imaging

Classification of Disc Degeneration*

Grade	Structure	Distinction of Nucleus and Anulus	Signal Intensity	Height of Intervertebral Disc
L	Homogeneous, bright white	Clear	Hyperintense, isointense to cerebrospinal fluid	Normal
П	Inhomogeneous with or without horizontal bands	Clear	Hyperintense, isointense to cerebrospinal fluid	Normal
111	Inhomogeneous, gray	Unclear	Intermediate	Normal to slightly decreased
IV	Inhomogeneous, gray to black	Lost	Intermediate to hypointense	Normal to moderately decreased
V	Inhomogeneous, black	Lost	Hypointense	Collapsed disc space

Gross Morphology

Grade	Nucleus	Annulus	Endplate	Vertebral body
I	Bulging gel	Discrete fibrous lamellas	Hyaline, uniformly thick	Margins rounded
П	White fibrous tissue peripherally	Mucinous material between lamellas	Thickness irregular	Margins pointed
Ш	Consolidated fibrous tissue	Extensive mucinous infiltration; loss of annular-nuclear demarcation	Focal defects in cartilage	Early chondrophytes or osteophytes at margins
V	Horizontal clefts parallel to endplate	Focal disruptions	Fibro cartilage extending from subchondral bone, irregularity and focal sclerosis in subchondral bone	Osteophytes less than 2 mm
V	Clefts extend through nucleus and annulus	week	Diffuse sclerosis	Osteophytes greater than 2 mm

Histological Analysis

Water Content (% Wet Wt)

(H)

GAG Content (%WW)

Cell Density (10⁶ cells/g DW)

Collagen Content Hydroxyproline (ug/ml)

Discs wedged in the opposite direction to the vertebrae

Bone-Screw Interface

No Fibrous Zone or Loosening

Lymph Nodes

No Foreign Body Reaction

Conclusion

- Consistent growth modulation.
- Disc physiology maintained.
- This may not be the same as correcting AIS...

Which Method is Best?

- Staples available for off-label use, Efficacy/Indications being defined
- Plate/Staple (HemiBridge): FDA IDE pilot approved
- Tethers: Clinical trial initiated OUS

Anterior Growth Modulation

- Cautious optimism
 Potential shift in treatment
- Data supports the clinical trials

Non-Fusion Correction