Scoliosis Induced by Radiofrequency Ablation in Growing Pigs Free Paper # 22

Mariano A Noel MD

Eduardo Galaretto MD Martin Segura MD Alejandro Olechuk MD Eugenia Robles MD Luciana Sasbon MD

Fundación Hospitalaria Materno infantil Children Private Hospital Buenos Aires, Argentina

> <u>http://www.fh.org.ar</u> mnoelar@yahoo.com.ar

Free-Paper #22

Presenter: Mariano A Noel (Synthes e, Covidien e)

Co-Authors:

Eduardo Galaretto Martin Segura Alejandro Olenchuk Eugenia Robles Sasbon Luciana No Relationships No Relationships No Relationships No Relationships No Relationships

^{4 th} International Congress on Early Onset Scoliosis and Growing Spine

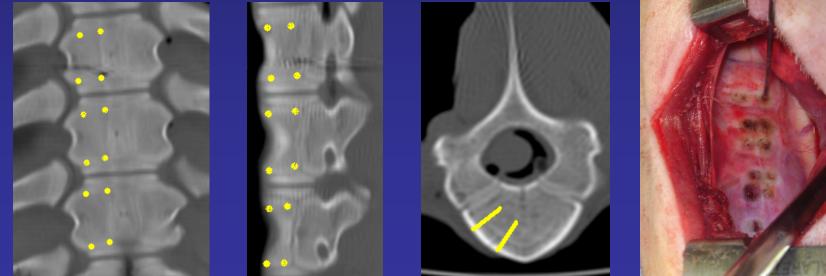
- a. Grants/Research Support
- b. Consultant
- c. Stock/Shareholder
- d. Speakers' Bureau
- e. Other Financial Support

Introduction

- The vertebral body growth may be strategically injured to create vertebral deformities in the immature spine.(1,2,3)
- With thermoablation by radiofrequency (RF) welldefined areas of necrosis may be induced in the bone and other tissues.(4,5)
- RF is potentially a good technique to modify the vertebral growth

Objetives

- Evaluate the effectiveness of radiofrequency to produce structural alteration of the anterior annular synchondrosis
- Evaluate the morphological and histological changes produced by the application of radiofrequency on anterior annular synchondrosis unilaterally on the growing spine.
- Evaluate whether neurophysiological monitoring is possible during application of radiofrequency on the spine

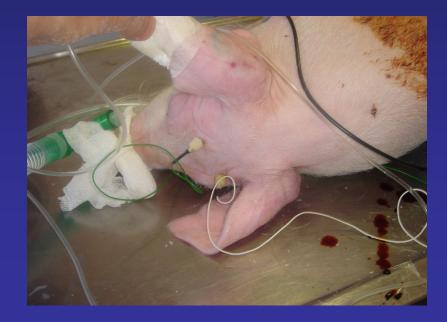

Material and Methods

Six 2-month-old pigs were divided into 2 groups A and B.

•Right thoracotomy T7,T8 without rib resection was performed.

• Adjacent to each annular synchondrosis 2 holes were drilled of 1mm diameter, 6mm deep on the right anterolateral face of T6, T7, and T8.

 Additionally, in group B a pulse of RF at 90 C for 90 seconds was delivered to each hole.



Material and Methods

•MEP were monitored during each RF pulse.

•The animals were killed 6 months later.

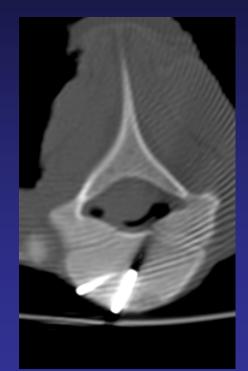
X-rays were performed before surgery and after sacrificing the pigs (A,B)
The vertebral-costal block was removed for CT and histopathology (B)

Results Group A

 None of the animals in group A developed significant curves, asymmetries, or vertebral rotation

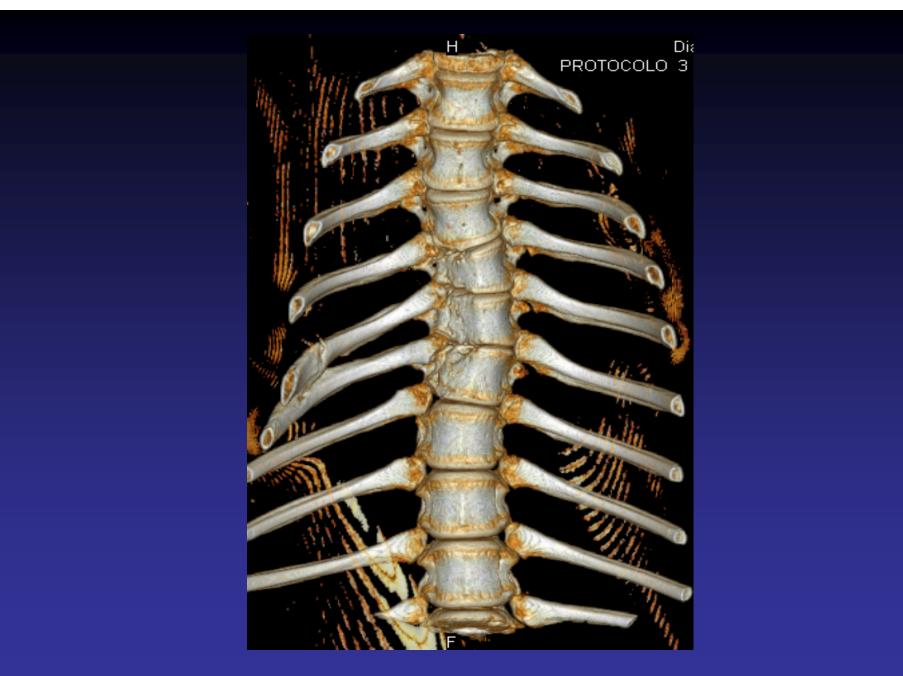
Groupe A	Age Mths	Evol time Mths	Scoliosis Cobb	Kyphosis Cobb	Axial rot
Pig1	2	6	0	4	0
Pig 2	2	6	5	0	0
Pig 3	2	6	0	0	0

Results Group B (RF)

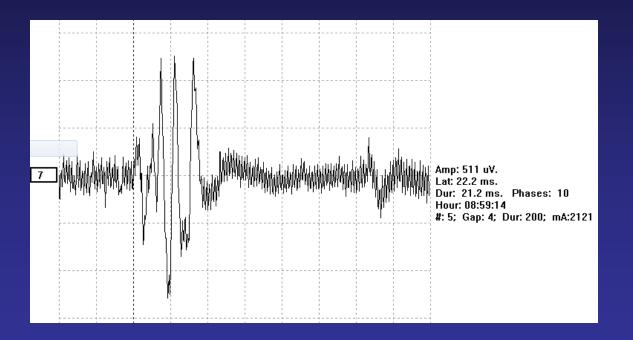

- All animals developed scoliosis of the right concavity (mean 25.7)
- Kyphosis (mean 20)
- Axial rotation with rib depression on the right side (mean 7.6).

Groupe B	Age Months	Evol time Months	Scoliosis	Kyphosis	Axial rot
Pig 1	2	6	23	15	6
Pig2	2	6	24	20	10
Pig3	2	6	30	25	7

 All vertebral bodies treated with RF (group B) developed right anterolateral hypoplasia


CT before RF Pig 17 Kg

CT RF electrode position Pig 17 Kg



CT after 6 months Pig 70 Kg

3D CT SCAN SPECIMEN GROUP B

 Clear and continuous MEP recordings before, during, and after application of RF were obtained in all specimens

MEP during RF Pulse

Conclusions

- Radio frequency is an effective method to produce structural alterations on vertebral annular synchondrosis.
- The asymmetric RF injury, induced scoliosis with the concavity and inward rotation to the side of the lesion, kyphosis, and asymmetric anterior hypoplasia.
- MEP can be well monitored during the RF pulse in the vertebral body

References

- **1** Phemister DB.
- Operative arrestment of longitudinal growth of
- bones in the treatment of deformities. J Bone Joint Surg Am. 1933;
- 15:1–15.
- 2 Beguiristain JL, De Salis J, Oriaifo A, Cañadell J
- Experimental scoliosis by epiphysiodesis in pigs.
- Int Orthop. 1980;3(4):317-21.
- **3** Zhang H, Sucato DJ.
- Unilateral pedicle screw epiphysiodesis of the neurocentral synchondrosis. Production of idiopathic-like scoliosis in an immature animal model.
- J Bone Joint Surg Am. 2008 Nov;90(11):2460-9
- **4** Wittkampf FH, Hauer RN, Robles de Medina EO. J Bone Joint Surg Am. 2008 Nov;90(11):2460-9 9801.
- <u>Control of radiofrequency lesion size by power regulation</u>
- Circulation. 1989 Oct;80(4):962-8
- <u>5 Rosenthal DI, Hornicek FJ, Torriani M, Gebhardt MC, Mankin HJ</u>
- Osteoid osteoma: percutaneous treatment with radiofrequency energy
- Radiology. 2003 Oct;229(1):171-5. Epub 2003 Aug 27.

