Tomasz Potaczek, MD Daniel Zarzycki, MD, PhD

Natural history and results of surgical treatment of spine deformities in patients with spinal muscular atrophy type 2 and type 3a

Department of Orthopedic Surgery and Rehabilitation, Jagiellonian University,

Zakopane, Poland

Introduction

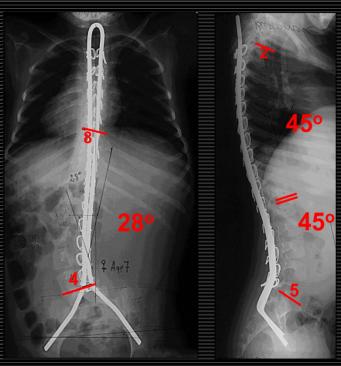
- Spinal muscular atrophy (SMA); diseases that manifests in progressive muscle weakness and flaccid paresis
- Pathogenesis Degeneration of anterior motor cells of the spinal cord
- Incidence 1/6-10k births
- Genetics autosomal recessive, gene SMN1 (survival of motor neuron) location, long arm of the 5th chromosome (5q11.2-13.3), incidence of carriers: 1/35-50 births
- Types of SMA^{1,2}:
 - SMA1 (Werdnig Hoffman disease, acute)
 - SMA2 (Su)-acute, non-ambulatory)
 - SMA3 (SMA3a, start to walk independently, but loose this ability < 3 y.o age; type SMA3b, Kugelberg-Welander disease)

Introduction

- Scoliosis dominant orthopaedic problem in non-ambulatory patients
 - ,,collapsing" scoliosis
 - prevents unaided sitting
 - decreases pulmonary function

- Halt progression
- Curve correction
- Facilitate seating position
- Level pelvis
- Respiratory status

Increase quality of life!?!



Aim of paper

- Evaluate the natural history and results of surgical treatment of spinal deformities in patients with spinal muscular atrophy types SMA2 and SMA3a
 - All patients treated with the same surgical technique
 - Galvestone technique (unit rod or double rod) posterior fusion with Luque wires
- To establish optimal criteria for surgical treatment depending on
 - age
 - curve magnitude
 - respiratory status

Material

- **Between 1985 2007 173 patients with SMA treated surgically**
 - 139 patients treated surgically due to scoliosis
 - -45 patients with follow-up period ≥ 5 years
 - -17 boys and 28 girls
 - Age at surgery mean 11.4 years
- Mean preoperative follow-up 2 years (1 6 years)
- ✓ Mean postoperative follow-up was 6.9 years (5 15 years)

Results – natural history of the deformity

	SMA2	SMA3a
No of patients	25	20
Age of SMA diagnosis	1.8 y.o (1-3)	2.8 y.o (1-8)
Wheelchairbound	1.3 y.0 (1-3)	5.2 y.0 (1 – 10)
Scoliosis onset	4.8 y.0 (3-8)	7.0 y.0 (5 – 10)
Annual curve progression pre-op	11.2°/year (0° - 50°)	14.9°/year (0° - 34°)
Annual AVT progression pre-op	9mm/year (-15-42mm)	15.4mm/year (0-73mm)

Results – perioperative data

A	<u>(2</u>)	e (of	SU	ge	ľV	
					<u> </u>	- -√-	

Curve magnitude (°)

FVC (%)

Time of surgery (hours)

Intraoperative blood loss (ml)

SMA2

10.5 y.o (5-21)

101.7° (38-158°)

40.6%

(21 - 83)

3.5 hours

(2.5-5.5)

 $\frac{620 \text{ ml}}{(150 - 2200)}$

SMA3a

12.6 y.o (8-21)

111.3° (43-150°)

54.1% (19 - 86)

3.8 hours (2 – 7)

712 ml (150 – 1350)

Results – according to age at surgery

Cobb angle pre-op(°)

Final correction (%) of Cobb angle

Pelvic tilt pre-op (°)

Final correction (%)
of pelvic tilt

AVT pre-op(mm)

Final correction (%)
of AVT

Group A

 $(below \le 11 y.o.)$

94,2°

(38 - 139)

53,7%

(30,1-84,1)

21,7°

(0 - 85)

57,8%

(-12,6-100)

82,0 mm

(18-165)

42,8%

(6,7-88,9)

Group B

(above > 11 yo.)

122,1°

(53-158)

42,6%

(18,3-71,7)

31,9°

(0-60)

47,7%

(8,0-100)

100,9 mm

(45 - 223)

30,9%

(10,5-80,0)

Results – according to


(pre-operative curve magintude)

	Group I	Group II	Group III
	(40°-80°)	(81°-120°)	(121°-160°)
No of patients	10	16	19
Age at surgery (years)	9.6	10.6	13.1
	(7 – 13)	(5 – 21)	(7 – 21)
Final curve	51.4%	44.7%	34.4%
correction (%)	(24.3 – 66.6)	(18 – 82.9)	(11.8-54)
Loss of correction	6.6%	5.9%	6.5%
during f-up (%)	(-1.9 – 18.6)	(-2.4 – 17.1)	(-3.7 – 18.5)
No of pt's with major curve progression (>10°)	3 (33%)	3 (19%)	5 (26%)
Total no of reoperations	1(10%)	4 (25%)	9 (47%)

Results – acc to pulmonary status

	Group 1 (FVC < 30%)	Group 2 (FVC 31-60%)	Group 3 (FVC > 61%)
No of patients	9	26	10
No of days of mechanical ventilation	1.3 (1-3)	1.3 (1-2)	1
No of patients requireing tracheostomy	1 (11.1%)	2 (7.6%)	0
No of reoperations	0.1 $(0-1)$	0.5 $(0-3)$	0

Patient female, Z.A., SMA type 2, age at surgery – 7 y.o follow-up 5 years

a) pre-op a-p, age 7

b) post-op a-p, lateral, age 7

c) post-op a-p, age 12

Complications

Early ex:

- CSF leakage
- Temporary neurological deficits
- Wound healing problems
- Rod malposition

Late cx:

- Pelvic rod loosening
- Too short range of fusion
- Late infection implant removal
- Rod transposition

- -1 patients
- -1 patient
- 2 patients
- -2 patients
- -3 patients
- -2 patients
- 1 patient
- 1 patient

Complications

	SMA2	SMA3a
No of patients requiring	7 patients	1 patient
revision surgery	28%	5%
Total number of revision	13	1
surgeries	Reop rate = 52%	Reop rate = 5%
Early	4 patients	2 patients
(<3 months)	16%	10%
Late	3 patients	1 patient
(>3 months)	12%	5%
Minor	1 patient	1 patient
(soft tissue procedures)	4%	5%
Major (bardwaya ramayal/ayahanga)	6 patients	0
(hardware removal/exchange)	24%	13

Conclusions

- Onset of deformity occurs 2 years after becoming wheelchairbound in SMA3a and 4 y.o age in SMA2
- Rapid curve progression SMA3a>SMA2
- No age limits for surgical treatment
- Surgical treatment allows to achieve good and stable correction
- Best results in lower curves 40°-80°
- No major respiratory cxs even in patients with initial low FVC

Referneces

- Evans GA, Drennan JC, Russman BS. Functional classification and orthopaedic management of spinal muscular atrophy. J Bone Joint Surg Br. 1981;63B(4):516-522.
- 2. Zerres K., Rudnik-Schöneborn S.: Natural history in proximal spinal muscular atrophy. Clinical analysis of 445 patients and suggestions for a modification of existing classifications. Arch Neurol. 1995;52(5):518-23
- 3. Shapiro F, Bresnan MJ. Orthopaedic management of childhood neuromuscular disease, 1: spinal muscle atrophy. J Bone Joint Surg Am. 1982;64:785-789.
- 4. Phillips DP, Roye DP Jr, Farcy JP, Leet A, Shelton YA. Surgical treatment of scoliosis in a spinal muscular atrophy population. Spine. 1990;15(9):942-945.
- 5. Merlini L, Granata C, Bonfiglioli S, Marini ML, Cervellati S, Savini R. Scoliosis in spinal muscular atrophy: natural history and management. Dev Med Child Neurol. 1989;31(4):501-8.
- 6. Aprin H, Bowen JR, MacEwan GD, et al. Spine fusion in patients with spinal muscle atrophy. Spine. 1982;7:276-284.
- 7. Brown JC, Zeller JL, Swank SM, Furumasu J, Warath SL. Surgical and functional results of spine fusion in spinal muscular atrophy. Spine. 1989;14(7):763-70.
- 8. Linson M, Bresnan M, Eraklis A, Shapiro F. Acute gastric volvulus following Harrington rod instrumentation in a patient with Werdnig-Hoffman disease. Spine. 1981;6(5):522-523.
- 9. Boachie-Adjei O, Lonstein JE, Winter RB, et al. Management of neuromuscular spinal deformities with Luque segmental instrumentation. J Bone Joint Surg Am. 1989;71:548-562.
- 10. Zebala LP, Bridwell KH, Baldur C, Richards B,Dormans JP, Lenke LG et al. Minimum 5-year Radiographic Results of Long Scoliosis Fusion in Juvenile Spinal Muscular Atrophy Patients: Major Curve Progression After Instrumented Fusion. J Pediatr Orthop 2011;31:480–488
- 11. Chng SY, Wong YQ, Hiu JH, et al. Pulmonary function and scoliosis in children with spinal muscular atrophy types II and III. J Paediatr Child Health. 2003;39:673-676.