Growth Modulation of the Spine

Peter O. Newton, MD

Rady Children's Hospital University of California, San Diego

San Diego – Orthopaedics

Disclosures & Acknowledgements

- DePuy Spine: Royalties, Consultant, Research support
- EOS Biospace: Research
- OREF, POSNA, SRS, CSF: Research support

Endochondral Ossification - Physis

Growth

Resting Zone

Proliferative Zone

Hypertrophic Zone

Trabecular Bone

Radv Metaphysischildren

Long Bones...

Dist Femur: 10 mm/yr

Spinal Growth

1 for spinous process (16th year)

Thoracic Vert: 0.7 mm/yr

Idiopathic Scoliosis "Disorder of Growth"

- Too much anterior spine, rotates out of plane to "shorten" the anterior column
- Thoracic curves
- Primary driver of all
 3 planes of deformity

Potential Solutions

- Shorten the anterior column
- Lengthen posterior column
- Mechanically
- Biologically
- Over time (with growth as the engine...)

Vertebral Staples

- Traditionally used for long bone correction
- Historical results in spine disappointing
- Advances in staple design
- Nitinol Alloy with shape memory properties

25° 38° 0° 22° С в R Betz 11° 22 30° Betz et al., Spine 20

Pig Model: Nitinol staples

Synchondrosis closure

Right Convexity Screw side

Anterior Spinal Tethering

Clinical Application (Lenke case)

Experimental Application

Bovine Model...

3/16" Cable from Home Depot (1990's)

Big Deformity, Big Animal

Yucatan Mini Pig Porcine Studies

- Twelve 7-monthold Mini-Pig
- Right sided double thoracotomy
- T8-T11 instrumented

Control vs. Tether Groups

- Control group (n=6):
 Sham surgery with only screws
- Tether group (n=6):
 - Tapered screw-staple design with a UHMWPE ribbon
- 6-month survival

Radiographic Analysis

- Assess deformity creation
- Radiographs
 - Coronal Cobb
 - Sagittal Cobb
 - Vertebral body wedging
 - Intervertebral disc wedging
- Computed Tomography
 - Vertebral body and intervertebral disc heights
 - Vertebral body rotation

Qualitative Analysis

Magnetic resonance imaging

 Gross morphology

- Percent Water
- Proteoglycan content (GAG assay)
- Collagen content (hydroxyproline assay)
- Cell Density (DNA assay)

Statistics

- ANOVA
 - Radiographic data, CT measurements
- Chi Square Analysis
 - Thompson grade, MR grade, Histological grade
- MANOVA
 - Water content, GAG content, Hydroxyproline content, cell density
- Bonferroni correction : p < 0.0125

Porcine Growth

Weight (kg)

Length (cm)

No significant differences in growth rate between the control and tether groups (p>0.73)

Deformity Creation

Coronal Cobb

Sagittal Cobb

Significant increase in the Coronal Cobb (p<0.001) and the Sagittal Cobb (p<0.01)

Effect of the Tether

Vertebral Body Wedging

Effect of the Tether

Intervertebral Disc Wedging

Computed Tomography

Control – 6 month post-op

Tether – 6 month post-op

3D CT Reconstruction

Tether – 6 month post-op

Axial Plane Deformity

Vertebral Body Rotation

3T Magnetic Resonance Imaging

Classification of Disc Degeneration*

Grade	Structure	Distinction of Nucleus and Anulus	Signal Intensity	Height of Intervertebral Disc			
I	Homogeneous, bright white	Clear	Hyperintense, isointense to cerebrospinal fluid	Normal			
П	Inhomogeneous with or without horizontal bands	Clear	Hyperintense, isointense to cerebrospinal fluid	Normal			
111	Inhomogeneous, gray	Unclear	Intermediate	Normal to slightly decreased			
IV	Inhomogeneous, gray to black	Lost	Intermediate to hypointense	Normal to moderately decreased			
V	Inhomogeneous, black	Lost	Hypointense	Collapsed disc space			
* Modified from Pearce (cited by Eyre et al ⁹).							

Gross Morphology

	The Thompson grading scheme [42] for gross morphology of the human lumbar intervertebral disc					
Grade	Nucleus	Annulus	Endplate	Vertebral body		
[Bulging gel	Discrete fibrous lamellas	Hyaline, uniformly thick	Margins rounded		
II	White fibrous tissue peripherally	Mucinous material between lamellas	Thickness irregular	Margins pointed		
ш	Consolidated fibrous tissue	Extensive mucinous infiltration; loss of annular-nuclear demarcation	Focal defects in cartilage	Early chondrophytes or osteophytes at margins		
IV	Horizontal clefts parallel to endplate	Focal disruptions	Fibro cartilage extending from subchondral bone, irregularity and focal sclerosis in subchondral bone	Osteophytes less than 2 mm		
V	Clefts extend through nucleus and annulus	-	Diffuse sclerosis	Osteophytes greater than 2 mm		

Bone-Screw Interface

No Fibrous Zone or Loosening

Lymph Nodes

Range of Motion

ROM significantly limited in lateral bending away from the tether. (p=0.01)

Discs wedged in the opposite direction to the vertebrae

3D Spinal Deformation – MRI

Disc Gradient Map

Disc (From MRI)

3D Spinal Deformation – Physis

3D Spinal Deformation – Histology

Physis: Cell and Zonal Analysis

Disc: Shape, Nuclei-to-Disc Ratio, Circularity, Area-to-Volume Analysis

3D Spinal Deformation Analysis – Confocal

Projection Plane

Nuclei Reconstruction

Conclusion

- Consistent growth modulation.
- Disc Motion maintained
- Disc metabolism maintained

Clinical Tethering?

- Cautious optimism
 Potential shift in treatment
- Data supports a clinical trial

Non-Fusion Correction

Pilot Trial – Hee Kit Wong

- Male and female
- 8 to 15 years of age
- juvenile or adolescent idiopathic scoliosis
- Major thoracic curve of 35° to 55° who are at high risk for progression
- At least three years of estimated growth remaining based on hand/wrist radiograph assessment of bone age (less than or equal to 11 for girls, less than or equal to 13 for boys.)

Subject 01

- 13 year old female
- Risser 0
- Cobb Angle 45 degrees
 Instrumentation T5 T12

Off Label Dynesys Anterior

- 9 y/o male
- Prader-Willi
- Progression in brace

Stay tuned...

Research Team

- Clinical Projects Tracey Bastrom, MA
 - Carrie Bartley
 - Nicole Carlton
 - Aileen Laurente
 - Molly Moor
 - Joanna Roocroft
- InVivo Studies Christy Farnsworth, MS
- Biomechanical Studies Diana Glaser, PhD
 - Josh Doan, MS
 - Chaitanya Nandipati
- Harms Study Group Michelle Marks, MS
 - Maty Petcharaporn
 - Caitlyn Schulte
 - Kit Holm
- International Research Fellows Drs Seki, Demura, Ono, Takahashi
- UCSD Research Residents Drs Fricka, Upasani, Varley, Carreau
- Funding Sources: OREF, SRS, POSNA, DePuy Spine, Biospace

