Are Proximal Rib Anchors Protective Against Rod Breakage in Distraction-Based Growing Rods?

Kent T. Yamaguchi Jr., BA; David L. Skaggs, MD; Shaun Mansour, BS;Karen S. Myung, MD, PhD; Muharram Yazici, MD; Charles Johnston,MD; George Thompson, MD; Paul Sponseller, MD; Behrooz Akbarnia,MD; Michael Vitale, MD, MPH

ICEOS 2012

CUniversity of othern California

1

Disclosures

Kent T. Yamaguchi Jr., BA-None Grants/Research Support а. b. Consultant David L. Skaggs, MD c. Stock/Shareholder Medtronic (b,d,e); Stryker (d); Biomet (b,d,e) d. Speakers' Bureau Shaun Mansour, BS-None e. Other Financial Support Karen S. Myung, MD, PhD-None Muharram Yazici, MD K2M (b, d) DePuy J&J (d) Charles Johnston, MD Medtronic Sofamor Danek (a, d, e), Saunders/Mosby-Elsevier, (e) George Thompson, MD Innovative Interventions, LLC (e) Paul Sponseller, MD Globus Medical (e); DePuy, A Johnson & Johnson Company (a,b,e) Journal of Bone and Joint Surgery oakstone medical (e) Behrooz Akbarnia, MD DePuy Spine Nuvasive (e) Nuvasive K2M Ellipse (b, d) K Spine; DePuy, A Johnson & Johnson Company (b) Michael Vitale, MD, MPH-**USC** University of Synthes (a), Biomet (b, e), Stryker (b) Southern California

CHILDREN'S OPAEDIC CENTER

Which Rods Break More?

Rib anchors Not Fused Spine anchors Fused

Ribs Move, Hooks on ribs have "slop" - not fused

Weeping Willow Bends

colormagicphotography.com

Methods

- retrospective, multi-center study
- Distraction Based Growing Rods (Not VEPTR)
- Inclusion criteria:
 - ≥ 2 years follow-up
 - <9 years-old at index surgery</p>
- Cox Proportional Hazards Model was used for statistical analysis to account for varying lengths of follow-up in regard to rod breakage events.

Results

- 175 subjects met criteria and were included in this study:
 - 33 subjects had <u>rib</u>-anchored growing rods
 - 142 subjects had spine-anchored growing rods
- Mean follow-up: 55 months (range, 24-152 months)

Results of Univariate Analysis

	Hazard Ratio	p-value
Preoperative Cobb Angle	1.021	0.006
Rib Vs. Spine Anchors	0.233	0.045
Age at Index Surgery	1.003	0.647
Number of Growing Rods	1.073	0.825
# of Instrumented Vertebrae	1.046	0.457
Number of Lengthenings/Year	1.046	0.457
Subject Diagnosis	1.016	0.876
Rod Metal	0.856	0.636
Rod Diameter	0.809	0.171

7

Results of Univariate Analysis

	Hazard Ratio	p-value		
Preoperative Cobb Angle	1.021	0.006		
Rib Vs. Spine Anchors	0.233	0.045		
Age at Index Surgery	1 3	0.647		
Number of G		0.825		
# of !		0.457		
Proximal spine-anchored rods have 3.6x increased risk of rod breakage (p=0.045)				

CHILDREN'S ORTHOPAEDIC CENTER

Results of Multivariate Analysis

	Hazard Ratio	p-value
Preoperative Cobb Angle	1.019	0.013
Rib vs. Spine Anchors	0.273	0.074

However, after adjusting for preoperative Cobb Angle, our result did not reach statistical significance (p=0.074) as higher preoperative Cobb angles are also associated with an 18% increased risk of breakage per 10° increase in Cobb angle (p=0.013).

Take Home Points

- Proximal rib-anchored growing rods may be protective against rod breakage
- This may be a result of "slop" at the hook-rib interface in addition to the normal motion of the costovertebral joint

References

- 1. Akbarnia BA, Mundis GM, Jr., Salari P, Yaszay B, Pawelek JB. Innovation in Growing Rod Technique: A Study of Safety and Efficacy of a Magnetically Controlled Growing Rod in a Porcine Model*. *Spine*. *Dec 3* 2011.
- 2. Bess S, Akbarnia BA, Thompson GH, et al. Complications of growing-rod treatment for early-onset scoliosis: analysis of one hundred and forty patients. *The Journal of bone and joint surgery*. *American volume*. *Nov 3 2010*;92(15):2533-2543.
- 3. Elsebai HB, Yazici M, Thompson GH, et al. Safety and efficacy of growing rod technique for pediatric congenital spinal deformities. *Journal of pediatric orthopedics*. *Jan-Feb* 2011;31(1):1-5.
- 4. Schroerlucke SR, Akbarnia BA, Pawelek JB, et al. How Does Thoracic Kyphosis Affect Patient Outcomes in Growing Rod Surgery? *Spine*. *Dec* 28 2011.
- 5. Teli M, Lovi A, Brayda-Bruno M. Results of the spine-to-rib-cage distraction in the treatment of early onset scoliosis. *Indian journal of orthopaedics*. Jan 2010;44(1):23-27.
- 6. Yang JS, Sponseller PD, Thompson GH, et al. Growing rod fractures: risk factors and opportunities for prevention. *Spine*. *Sep* 15 2011;36(20):1639-1644.

