

Vertebral growth reductions after spinal hemiepiphysiodesis

Finite element model vs histomorphometry

Kumar B, Bylski-Austrow DI, Wall EJ

DISCLOSURES / Acknowledgments

- Bylski
 - IP, unpaid consultant
 - SpineForm LLC
- Wall
 - IP, unpaid consultant
 - SpineForm LLC
 - Consultant
 - OrthoPediatrics
 - Unpaid consultant
 - Stryker

Research support

- UC Computer-aided Engineering
- Financial
 - UOREF
 - Kumar, MS student stipend

Significance: Clinical trial Growth modification

- Prospective clinical safety trial
 - FDA, IRB approved
 - Wall et al ICEOS 2012, #31
 - Late juvenile and early AIS

- Pre-clinical studies
 - Curvature 2 mo PO
 - Porcine spines
 - Wall et al ORS 2011

Previous pre-clinical studies

Growth plate structure

- Graduated reductions
 - Hypertrophic zone height
 - Bylski-Austrow et al JBJS 2009

Proxy for bone growth rate

• Farnum et al 2000

Preliminary biomechanical studies

Compression

- In vitro disc stresses
- In vivo stresses
 - Glos 2010
 - Bylski 2012

Previous finite element model (FEM)

Determine if

Growth plate hypertrophic zone reductions observed at 2 months PO correlate with growth reductions predicted by a FEM with linear relationship between compressive stress and growth

Methods: 3-D FEM

- Porcine spine, CT scan
 T7-T8
- Material properties from lit
 - Bone: Cortical, cancellous, end plates
 - Annulus: Anisotropic hyperelastic continuum
 - Nucleus fluid inside cavity
 - Eberlein 2001
- Analysis
 - Static, nonlinear, large deformation
- Contact conditions
 - Coef of friction between bone & implant 0.3
- Initial conditions
 - 2° tilt w/out initial stress

FEM Growth model

- Growth plate elements added ٠
- Linear growth modulation model •

$$\varepsilon_{m} = \delta G_{y} + \beta_{y} \delta \sigma_{yy} \delta G_{y}$$

$$\beta = 1.2 \text{ MPa}^{-1}$$

5

- Stokes 1990, 2007 • Villemure, Aubin 2002

- **Initial baseline growth**
 - **Temperature strain analogy**
- 2 month PO time simulated •
- **Growth modulation strains calculated** ٠
 - Applied static compressive stress 0.5 MPa

Calculated growth after treatment

 Reduced across coronal plane compared to calculated control growth after 2 iterations (2 mos)

Histomorphometry vs FEM

Normalized growth (% control)

Location	Ipsilateral	<u>Contralateral</u>
Method	1/5 th distance from implant to opposite cortex	4/5 th distance from implant to opposite cortex
FEM	32%	81%
Histomorph	69%	92%

Discussion

Limitations of FEM

- No viscoelasticity
- No neutral zone
 - FEM cannot model rigid body motion
- Sensitivity to many parameters unknown
 - Only one PO time

• FEM useful to assess growth reductions due to compression

- If & only if developed with in vitro & in vivo tests
 - Parametric analyses within device design type

Conclusions

- FEM simulated growth reduction gradient
 - Calculated reductions greater than measured
 - Over-estimated treatment efficiency
- Supports concept Hueter-Volkmann ~ linear
 - Compressive stress vs growth rate
 - With methods to modify nearly physiological growth

Conclusion

Vertebral growth reductions after spinal hemiepiphysiodesis as determined by histomorphometry were lower than predicted by this finite element model with linear stress-growth relationship

