Three Dimensional Kinematic Analysis of Regional Chest Wall Motion and Volume Changes During Respiration in Healthy Children

- K. Patrick Do, B.S.
- Lee Taylor, M.D.
- Jing Feng, Ph.D.
- Rosemary Pierce, PT
- Michael Aiona, M.D
- Charles d'Amato, M.D. FRCSC

Shriners Hospitals for Children[®] Portland, Oregon

Motion Analysis Lab

Optoelectronic Plethysmography (OEP) Introduction

- Motion analysis laboratory (gait lab)
- OEP measures chest wall motion during breathing maneuvers
- OEP correlates well with conventional spirometry FVC and TV in adults

OEP Basics

- Markers on the chest
- Collect data during breathing maneuvers
- Define a triangle mesh with the markers
- Sum the volumes of the tetrahedra associated with each triangle
- Analyze in any plane

OEP potential

- Study effect of interventions deformities or disease on chest wall motion
- " PFT "in EOS treatment
- Non invasive, no radiation

OEP Validated in Adults

- In normal subjects (Carnevali et al., 1996) speaking, breathing; exercising; flute
- With single-lung ventilation (De Groote et al., 2004)
- With hemiplegia (Lanini et al., 2003)

Regional analysis of motion

- Marker subsets show L, R and abd.
- Using ultrasound, the motion of the diaphragm may be inferred from the motion of the abdominal region (Wang et al., 2009)

Purpose

- Compare OEP to pneumotachometer spirometry in normal children aged 8 – 12
- Establish ratios for regional thoracic motion and contribution to FVC
- Validate the accuracy of this method for future 3D chest wall motion studies

Materials and Methods

- 10 boys and 2 girls < 13 yrs</p>
- No known respiratory disease, neuromuscular, skeletal problems, deformity, or chest wall trauma
- 10 Vicon infra-red cameras, 86 reflective markers (6mm), 42 front, 34 back, 10 lateral
- Each subject measured three times with simultaneous capture of OEP and Spirometry (Cosmed)®

FIGURE 1. Markers on the body to define the chest wall as described by Ferrigno et al, 1994.

FIGURE 2. The chest wall separated into three compartments and left and right sides as described by Aliverti et al., 2002.

Results

- Mean age 9.90 ± 1.39 (8.08-12.2) years
- Mean FVC 2.07 ± 0.44 L by spirometry; Mean FVC 2.08 ± 0.42 L by OEP Pair T-test (*p* =.62)
- % error spirometry vs OEP was 2.19% ± 1.55 %
- Error close to five percent between different spirometry systems (Aliverti et al, 2000)

FIGURE 3. Scatterplot of FVC measured using spirometer and OEP.

FVC measures from the spirometer and OEP are strongly correlated.

- Linear regression slope of 0.9503 (p<0.001) and an intercept of 0.0987 (p<0.05)
- Pearson product-moment correlation coefficient = 0.9924 (p<0.001).

FIGURE 4. Bland-Altman analysis. The dotted lines are the ninety-five percent limits of agreement (mean \pm 1.96 standard deviation), and the solid line is bias value (mean of difference).

Bland–Altman plot showed good agreement between OEP and spirometry over the entire range of measurements.

Section	V _{UT}	V _{LT}	V _{AB}	V _{TOT}
FVC (L)	0.65 ± 0.14	0.41 ± 0.18	1.02 ± 0.26	2.08 ± .44
Contributions to total volume	31%	20%	49%	

- Contribution to FVC differed significantly across the three compartments. F (2, 105) = 97.993, p <0.001. Post hoc analyses (Bonferroni): the average contributions to FVC are significantly different (p<0.001) between any two of the three compartments.
- Contributions made by the left and right sides were fairly symmetrical with a difference of 2% on average. Paired Test (*p*=0.21).

Spirometer (green) with OEP

Cross Sectional Area Changes at Each Level Relative to FVC

Quiet Breathing

FVC

1000 -

Forced FVC5, frames 1966-2366

Discussion

- AB > UT >LT (at rest)
- Early fusion of the UT segments more detrimental to PFT (Karol et al., 1996)
- Proximal thoracic fusions worse lung development (Canavese et al., 2007)
- Motion of the AB section is correlated with diaphragmatic excursion in an ultrasound study (Wang et al., 2009)
- R & L thorax seem to contribute evenly.
 Consistent with adults using OEP (Tobin et al, 1986; Ferrigno et al., 1994; Cala et al., 1996; Aliverti et al., 2001)

Limitations

• Only 12 subjects. However, results are very robust and consistent.

Prospective Study

Adams FB view

Conclusions

- 3D chest wall analysis: non-invasive evaluation of thoracic or abdominal motion
- Measures tidal volume, total volume, in EOS patients unable to do PFT
- Reliable for future chest wall motion studies

Thank you

References

1. Aliverti A, Brusasco V, Macklem PT, et al. Opto-electronic plethysmography. In: Aliverti A, Pedotti A, eds. *Mechanics of Breathing: Pathophysiology, Diagnosis and Treatment*. Milan: Springer-Verlag 2002:47–59.

2. Tobin MJ. Noninvasive evaluation of respiratory movement. In: Nochomovitz ML, Cherniack NS, eds. *Contemporary Issues in Pulmonary Disease: Noninvasive Respiratory Monitoring.* New York: Churchill Livingstone, 1986:29–57.

3. Ferrigno G, Carnevali P, Aliverti A, et al. Three-dimensional optical analysis of chest wall motion. J Appl Physiol 1994;77:1224–31.

4. Cala SJ, Kenyon CM, Ferrigno G, et al. Chest wall and lung volume estimation by optical reflectance motion analysis. J Appl Physiol 1996;81:2680–9.

5. Aliverti A, Dellaca R, Pelosi P, et al. Compartmental analysis of breathing in the supine and prone positions by optoelectronic plethysmography. Ann Biomed Eng 2001;29:60–70.

6. De Groote A, Wantier M, Cheron G, et al. Chest wall motion during tidal breathing. J Appl Physiol 1997;83:1531–7.

7. Kenyon CM, Cala SJ, Yan S, et al. Rib cage mechanics during quiet breathing and exercise in humans. J Appl Physiol 1997;83:1242–55.

8. Aliverti A, Ghidoli G, Dellaca RL, et al. Chest wall kinematic determinants of diaphragm length by optoelectronic plethysmography and ultrasonography. J Appl Physiol 2003;94:621–30.

9. Romagnoli I, Gigliotti F, Lanini B, et al. Chest wall kinematics and respiratory muscle coordinated action during hypercapnia in healthy males. Eur J Appl Physiol 2004;91:525–33.

10. Aliverti A, Dellaca R, Pelosi P, et al. Optoelectronic plethysmography in intensive care patients. Am J Respir Crit Care Med 2000;161:1546–52.

11. Lanini B, Bianchi R, Romagnoli I, et al. Chest wall kinematics in patients with hemiplegia. Am J Respir Crit Care Med 2003;168:109–13.

12. Aliverti A, Stevenson N, Dellaca RL, et al. Regional chest wall volumes during exercise in chronic obstructive pulmonary disease. Thorax 2004;59:210-6.

13. Vogiatzis I, Aliverti A, Golemati S, et al. Respiratory kinematics by optoelectronic plethysmography during exercise in men and women. Eur J Appl Physiol 2005;93: 581–7.

14. Lissoni A, Aliverti A, Molteni F, et al. Spinal muscular atrophy: kinematic breathing analysis. Am J Phys Med Rehabil 1996;75:332-9.

15. Ferrigno G, Carnevali P. Principal component analysis of chest wall movement in selected pathologies. Med Biol Eng Comput 1998;36:445–51.

16. Lissoni A, Aliverti A, Tzeng AC, et al. Kinematic analysis of patients with spinal muscular atrophy during spontaneous breathing and mechanical ventilation. Am J Phys Med Rehabil 1998;77:188–92.

17. Chiumello D, Carlesso E, Aliverti A, et al. Effects of volume shift on the pressure-volume curve of the respiratory system in ALI/ARDS patients. Minerva Anestesiol 2007;73:109–18.

Wang HK, Lu TW, Liing RJ, Shih TT, Chen SC, Lin KH. Relationship between chest wall motion and diaphragmatic excursion in healthy adults in supine position. J Formos Med Assoc. 2009;108(7):577-86.
 Altman DG, Bland JM (1983). Measurement in medicine: the analysis of method comparison studies. *The Statistician* 32, 307-317.
 Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet, 1986, i:307-310.
 Karol LA, Johnston C, Mladenov K, Schochet P, Walters P, Browne RH.
 Karol LA, Johnston C, Mladenov K, Schochet P, Walters P, Browne RH: Pulmonary function following early thoracic fusion in non-neuromuscular scoliosis. J Bone Joint Surg Am 2008;90(6):1272-1281.

22. Canavese F, Dimeglio A, Volpatti D Canavese F, Dimeglio A, Volpatti D, et al.: Dorsal arthrodesis of thoracic spine and effects on thorax growth in prepubertal New Zealand white rabbits. Spine (Phila Pa 1976) 2007;32(16):E443-E450

23. Hedenstierna, G., A. Strandberg, B. Brismar, H. Lundquist, L. Svensson, and L. Tockics. 1985. Functional residual capacity, thoraco-abdominal dimension and central blood volume, during general anesthesia with muscle paralysis and mechanical ventilation. *Anesthesiology* 62:247–254.

24. Redding G. Song K. Inscore S. Effmann E. Campbell R. Lung function asymmetry in children with congenital and infantile scoliosis. Spine 8(4):639-44, 2008 Jul-Aug.