Prediction of thoracic dimensions and spine length based on individual pelvic dimensions: Validation of the use of pelvic width obtained with radiographs

Michael P Glotzbecker MD; Michael Dombek BS; Meryl Gold BA; Patricia Miller MS John B. Emans MD

Boston Children's Hospital, Boston, MA, USA

Background

- Important outcome measures in EOS/TIS:
 - Change in thoracic dimensions and spine length

- Measurement of change in individual patients over time and comparisons are confounded in EOS:
 - Variable growth rates, etiologic diagnoses, and statures

Prediction of Thoracic Dimensions and Spine Length Based on Individual Pelvic Dimensions in Children and Adolescents

An Age-Independent, Individualized Standard for Evaluation of Outcome in Early Onset Spinal Deformity

John B. Emans, MD,* Michelle Ciarlo, BS,* Michael Callahan, MD,† and David Zurakowski, PhD*

- Age-Independent, individualized standard for evaluation of outcome in early onset spinal deformity
- Normal patients who had CT scans

Background

- Limitations:
 - Radiation
 - Cost
 - Measuring in patientswith deformity is NOTstraight forward on CT

Purpose

Validate pelvic width (plain radiograph) as an independent standard

Correlate with thoracic dimensions

Methods

- Group 1
 - Patients with scoliosis who had both a CT and a pelvic radiograph were identified.
 - Pelvic inlet width was measured and compared between CT and plain radiograph.

Methods

- Group 2
 - Patients with minimal
 deformity (Summation of all
 cobb angles less than 15
 degrees)
 - Pelvic width compared to
 previously published, CT-based
 chest and spinal measurements

Methods

 Intraclass correlation coefficient was calculated for all measurements to evaluate interobserver reliability

Group 1: CT vs XR Pelvic Width

Group 2: Minimal Deformity

Age at X-ray (yr)	Males	Females	Total
0-5	10 (13.7)	4 (4.4)	14 (8.6)
6-10	16 (21.9)	29 (32.2)	45 (27.6)
11-15	39 (53.4)	49 (54.4)	88 (54.0)
16-20	8 (11.0)	8 (8.9)	16 (9.8)
	73	90	163

The distribution of patients across age groups was comparable for males and femails as determined by the Pearson Chi-square test (P=0.124)

- 73 males
- 8o Females

MALES

FEMALES

Spine height R= 0.93

Chest width R= 0.86

Thoracic Height R= 0.92

Equations

Variable	Pearson Correlation	Coefficient of Determination	Equation for Males	Equation for Females
Maximum Chest Width	0.86	0.81	1.4 X PW + 86.5	1.4 X PW + 69.7
Thoracic Height	0.92	0.86	1.9 X PW + 41.1	1.9 X PW + 33.0
Lumbar Height	0.88	0.78	1.1 X PW + 30.9	1.1 X PW + 60.1
Thoracolumbar Height	0.93	0.90	3.0 X PW + 72.0	3.0 X PW + 27.2

Inter-rater reliability

CT v XR pelvic inlet

Measure	Intraclass Correlation Coefficient	Lower 95% Confidence Limit	Upper95% Confidence Limit
ctinlet	0.997	0.992	0.999
xrinlet	0.985	0.973	0.992

XR measures normal

Measure	Intraclass Correlation Coefficient	Lower 95% Confidence Limit	Upper95% Confidence Limit
xrchest	0.994	0.988	0.997
xrinletN	0.995	0.991	0.998
xrt1t12	0.978	0.961	0.989
xrt1s1	0.985	0.966	0.993

Discussion/Conclusion

- Pelvic width on plain radiographs correlates with:
 - Pelvic width measurements obtained on CT in patients with deformity
 - Spine and thoracic parameters in patients with minimal deformity.
- Fast, reliable method of assessing skeletal
- Lower radiation exposure
- Can be used to assess patients with EOS, and the impact surgical treatment has on chest and spinal growth

