What Every Surgeon Needs To Know About Pulmonary Issues in EOS

Gregory J. Redding, MD Chief, Pulmonary and Sleep Medicine Seattle Children's Hospital University of Washington School of Medicine

Disclosures

Editor for Pediatric Pulmonary section of UpToDate.

Pulmonary Features of Early Onset Scoliosis

↓ Low Lung Volumes*

 Chest Wall
 <u>Distensibility</u> and Excursion

Respiratory <u>Muscle</u> Force and Movement Hypoxemia Poor sleep Cor pulmonale

↑ Work Tachypnea + Poor Growth ↓ Exercise Tolerance

Respiratory Failure

General Principles of Care

- Progressive deformity leads to decline in respiratory function.
- Current surgical interventions preserve but do not restore lung function.
- Early intervention (surgical vs nonsurgical) to prevent deformity will likely improve potential for lung development and growth.

More Principles

- Age at fusion impairs further growth of the thorax, and hence lung function.
- Lung function declines as adults age.
 - Pulmonary status (and loss of reserve) will likely influence life span and quality of life.

Pulmonary Epochs of Care for Thoracic Insufficiency Syndrome

Pre-operative Era.... (includes non-surgical options, e.g. casting)

- Initial Respiratory Severity AssessmentDiagnosis of Co-morbidities
- Provision of Resp. supportive care
- Monitor Progression of Respiratory status
- Philosophy of Care Pre-surgical Rx

Pulmonary Epochs of Care (con't)

Operative Era.....

Assess changes after surgery
Assess timing of expansions
Strategize for timing of fusion

Post-Surgical Treatment Era.....

Provide medical home for chronic pulmonary management
Arrange transition to adult care

Two Lung Volumes: FVC and RV in EOS

Effects of EOS on Breathing During Sleep

AHI

Lung Volumes Before and 6 Months After Device Impantation*

Mayer OH, Redding GJ Pediatr Orthop 29(1):35-38, 2009.

Increase in FVC After VEPTR Use: Effect of Age

Age at Surgery *N* Increase in FVC per year*

< 6 years 16 > 6.5 years 7 14.7 +/- 8.5% 6.5 +/- 5/.5%

*in absolute liters of lung volume

Motoyama et al. Paed Resp Rev 10:12-17, 2009.

Pre vs Post-op Vital Capacity after Spine Fusion for AIS

Newton PO, et al. Spine 32(17):1875-1882, 2007.

Chest Wall Compliance Declines With Age in Normal Children

Chest wall compliance falls by 30% from 5 to 16 years of age

Effects of deformity and immobility over years?

Sharp et al. J App Physiol 29:775, 1970.

Rotation Before and After Growing Rod Insertion

Sabourin M, et al. *Clinical Biomechanics* 25:284-291, 2010.

N=4

Chest Wall Compliance in Children with EOS

 Chest wall compliance is reduced:

• With post-natal age

 With progressive chest wall and spine deformity

 With combined metal implants in the chest and spine ?

Inspiratory Respiratory Muscle Disorders

Roussos C, Macklem PT. In: The Thorax (vol 29):Marcel Dekker, Inc., 1984.

Reduced Respiratory Muscle Strength in EOS and AIS

Reduced Intercostal Motion —>Diaphragm Dependence

Reduced Diaphragm Excursion --> Reduced Vital Capacity

Moreno LC, et al. *Am Rev Respir Dis* 132(1):48-52, 1985. Martinez-Llorens et al. *Eur Resp J* 36(2):393-400, 2010. Redding G, et al. ICEOS, 2012.

Kondo T, et al. *Respirology* 5:19-25, 2000. Cluzel P, et al. *Radiology* 215:574-583, 2000.

Overall Respiratory Effects* of Current Treatments of EOS

Lung and Intrathoracic volumes
Chest Wall Compliance
Respiratory Muscle functions

no change

*Most effects unstudied to date for different treatments

Pulmonary Responses to Surgical Treatment of EOS by Lung Volumes

What are the Pulmonary Targets for "Good" Outcomes?

 American Thoracic Society definition of "disability" in adults:

Moderate impairment:

 Impairment sufficient to diminish ability to perform normal jobs: FVC = 50-59% predicted

Mild impairment: FVC = 60-79% predicted

Johnston CE, et al. Spine 36 (14); 1096-1102, 2011.

Summary

Current surgical treatments increase lung volumes enough to almost keep up with somatic growth.

Early non-surgical interventions that also reduce rotation may preserve lung function better than surgical distraction alone.

New multi-disciplinary approaches are needed to recover lung function already lost due to scoliosis.