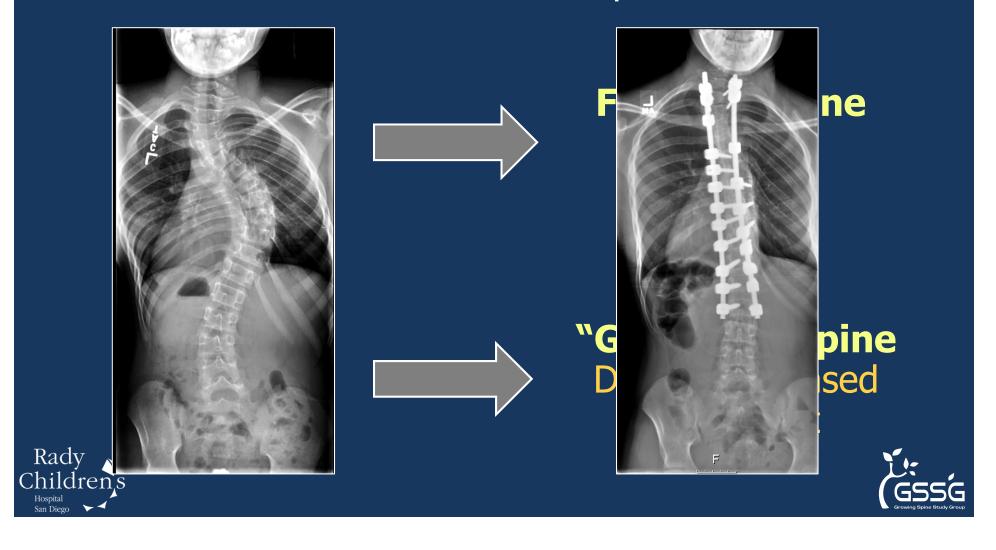
Case-Matched Comparison of Spinal Fusion Versus Growing Rods for the Surgical Treatment of Progressive Idiopathic Scoliosis in Skeletally Immature Patients

Jeff Pawelek, BS
Burt Yaszay, MD
Stacie Nguyen, MPH
Peter O. Newton, MD
Gregory M. Mundis, MD
Behrooz A. Akbarnia, MD
Harms Study Group
Growing Spine Study Group

International Congress on Early Onset Scoliosis San Diego, CA – November 21-22, 2013


DISCLOSURES

a. Grants/Research Support b. Consultant c. Stock/Shareholder d. Speakers' Bureau e. Other Financial Support

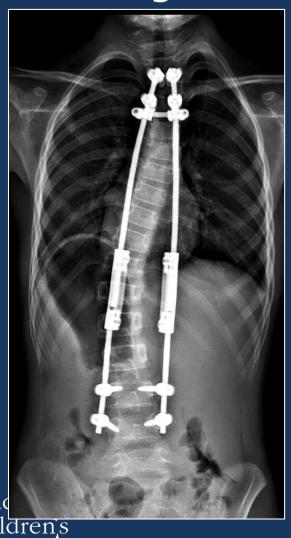
Jeff Pawelek, BS	None
Burt Yaszay, MD	(a) DePuy synthes; Children's Spine Study Group Foundation; (b) Depuy-Synthes, K2M, Nuvasive; (d) DePuy-Synthes, K2M; (e) K2M, OrthoPediatrics
Stacie Nguyen, MPH	None
Peter O. Newton, MD	(a) DePuy-Synthes; EOS Imaging; Orthopedic Research & Education Foundation; Pediatric Orthopedic Society of North America, Scoliosis Research Society; Harms Study Group Foundation; Setting Scoliosis Straight Foundation; Childrens Specialist Foundation; (b) DePuy-Synthes, Cubist, Ethicon; (c) ElectroCore (d) DePuy-Synthes; (e) DePuy-Synthes; Thieme Publishing
Gregory M. Mundis, Jr., MD	(a,b,d) Nuvasive; (a,b) K2M; (a,e) DePuy Synthes
Behrooz A. Akbarnia, MD	DePuy Spine (a,), Ellipse (b,c), K2M (b), KSpine (b,c), Nuvasive (a,b,c)
Harms Study Group	(a) DePuy-Synthes, OREF
Growing Spine Study Group	(a) Growing Spine Foundation

INTRODUCTION

Patients with progressive juvenile idiopathic scoliosis face various treatment options

INTRODUCTION

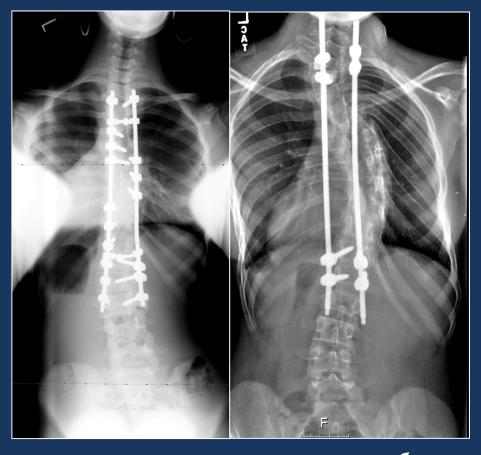
Spinal Fusion



- + Single surgery treatment
- + Low complication rate
- + Proven improvement in quality of life
- ! Stops growth of fused levels prior to skeletal maturity
- ? Effect on spinal/thoracic height

INTRODUCTION

Growing Rods



- + Maintains spinal/thoracic growth
- + May help prevent short stature and pulmonary disease
- + May minimize risk of crankshaft
- ! High rate of complications
- ! Burden of repeated surgeries
- ! Impact on quality of life not well-understood

PURPOSE

 Compare spinal fusion vs. growing rods using a casematched series

- Multicenter EOS database was used to identify patients:
 - Skeletally immature (open tri-radiates)
 - 9-11 years old at initial surgery
 - Major thoracic curve
 - Idiopathic etiology
 - Growing rod surgery
 - Underwent "final" spinal fusion

- Multicenter AIS database was used to identify patients:
 - Skeletally immature (open tri-radiates)
 - 9-11 years old at surgery
 - Major thoracic curve
 - Definitive fusion
 - Minimum 2-years follow-up

- A one-to-one patient match was performed using:
 - Pre-op age (+/- 12 months)
 - Major curve size (+/- 10°)
 - Location of curve apex (+/- 2 levels)
- All x-rays were reviewed to confirm similar curve patterns

- Study time points
 - Pre-op
 - 1st post-op
 - After index surgery for growing rods
 - Latest follow up
 - After "final" fusion for growing rods

Demographics

	Growing Rods	Spinal Fusion
# of patients	11	11
Mean age at pre-op	10.1 years	10.8 years
Mean age at latest follow up	15.7 years	13.2 year
Mean follow-up	5.6 years	2.5 years

Mean Major Curve Size

	Growing Rods	Spinal Fusion	p Value
Pre-op Cobb	58°	60°	<i>p</i> =0.145
Post-op Cobb	35°	17°	<i>p</i> =0.005*
Latest Cobb	31°	24°	p=0.131
Initial Cobb correction	38%	71%	p=0.004*
Overall Cobb correction	45%	58%	p=0.110

Mean T1-T12 Thoracic Height

	Growing Rods	Spinal Fusion	p Value
Pre-op T1-T12	228 mm (187-263 mm)	210 mm (175-236 mm)	p=0.041*
Post-op T1-T12	234 mm	228 mm	<i>p</i> =0.035*
Latest T1-T12	265 mm	237 mm	p=0.002*
Initial % increase	8%	9%	<i>p</i> >0.05
Overall % increase	18%	13%	<i>p</i> >0.05

Mean T1-S1 Spine Height

	Growing Rods	Spinal Fusion	p Value
Pre-op T1-S1	350 mm	341 mm	p=0.269
Post-op T1-S1	379 mm	369 mm	p=0.437
Latest T1-S1	429 mm	386 mm	p=0.001*
Initial % increase	9%	8%	<i>p</i> >0.05
Overall % increase	25%	13%	p=0.01*

of Levels Instrumented

	Growing Rods	Spinal Fusion
Initial surgery	12.0 levels	10.5 levels
Latest follow up	13.1 levels	11.1 levels

Surgical Procedures

Growing Rods	Spinal Fusion
26 lengthenings Mean = 2.4 per patient	N/A
10 revision surgeries	2 revisions
5 of 11 patients (45%)	2 of 11 patients (18%)
47 total surgeries	13 total surgeries

CONCLUSIONS

- Compared to spinal fusion, growing rod patients:
 - Similar overall curve correction
 - Similar increase in thoracic height
 - 47 surgeries vs. 13 surgeries
 - **2.5x** rate of revision surgery
 - Marginally greater spine height
 - Does this remain true until skeletal maturity?
 - Is this clinically relevant?

CONCLUSIONS

- Not all patients reached skeletal maturity at latest follow up
- Next step
 - Analyze data when all patients are skeletally mature

THANK YOU

The Growing Spine Foundation acknowledges and thanks all donors who support its cause.

