

Is There an Optimal Interval to Distract Growing Rods?

Michael Paloski DO, Paul D Sponseller MD, Behrooz Akbarnia MD, David L Skaggs MD, GSSG Paper #13; Nov 21, 11:15-19 am

Disclosures

- Medical Education Reviews
- JBJS
- Depuy Synthes Spine: Research, royalties
- Globus: Royalties

Introduction

- Dual rods (Moe, Thompson/ Akbarnia):
 Limited foundations, spanning rods
- These rods need to be serially distracted as separate surgical procedures.

When to lengthen?

- Akbarnia:
 - distractions scheduled based on age, height, dx, progression.
- Thompson :
 - Distractions every 6 months
 - Frequent lengthenings "drive the spine"
 - 13 patients

Actual lengthening intervals

- Yang: GSSG review
 - in actuality, average time between lengthening was 8.6 \pm 5.1 months
 - only 24% of distractions $\leq @$ 6 mo intervals

Purpose

 To determine, with a larger series, if there is a significant difference in final spinal height, final Cobb angle, or final instrumented height related to the average time interval between distractions of dual growing rods

Hypothesis

- Hypothesis:
 - increased time between distractions of dual growing rods in EOS does not result in a reduced overall spine height or instrumented segment height
 - does not result in a decreased ratio of final to initial Cobb angle.

Methods

- Prospectively collected data from the Growing Spine Study Group
- Inclusion criteria: EOS
 - 4+ distraction procedures (including revisions)
 - >4 years of follow-up
- 2 groups
 - average lengthening interval <9 months
 - Average lengthening interval ≥9 months
- Post-initial to post- final measurements

Results

Demographics of 46 patients

- ✤ Gender
 - Female: n = 23
 - ➢ Male: n = 23
- ✤ C-EOS Etiologies
 - ✤ Idiopathic: 12
 - ✤ Neuromuscular: 8
 - Congenital: 6
 - ✤ Syndromic: 15
 - Unknown: 5
- ✤ Average Age
 - Post Index Procedure: 5 yrs

Results

 Δ Cobb Angle: p = .52> <9 months: -8° (23°) ≥ 29 months: -4° (19°) Δ Instrumented Segment Height: p = .60> < 9 months: 59 mm \geq 29 months: 52 mm Δ Spinal Height: p = .58> < 9 months: 63 mm (78) \geq 29 months: 53 (38) (Measured from post-initial to post-final films)

Conclusion

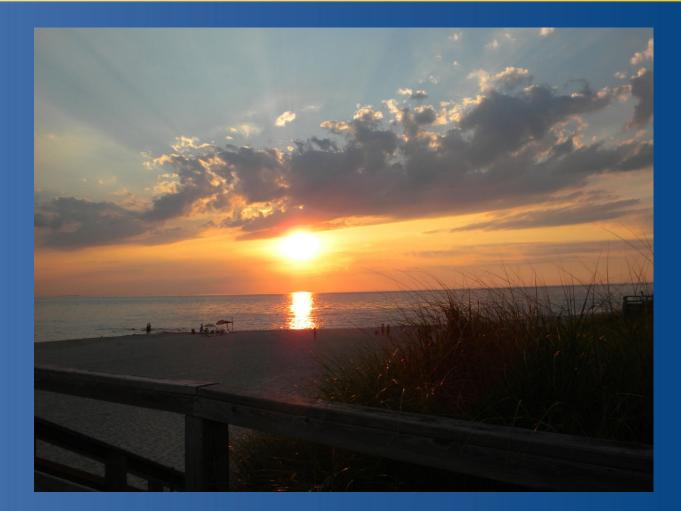
No statistical difference in:

 change in major Cobb angle
 instrumented segment height
 overall spinal height from the first procedure to final procedure

 in patients with mean lengthening intervals of <9 months vs ≥9 months.

Conclusion

- This study demonstrates that extending the lengthening interval to 9 months or more will not result in inferior outcomes in regards to curve correction, spinal height, or instrumented segment height
- More length (less often) may work
 - And provide fewer complications (Bess et al)


Limitations

- Varying underlying diagnoses
- Study size
 - Absolute values all favored shorter intervals
 - Clinical significance?

Thank You

NS HOPKINS

