
CT Lung Volume Increase after Surgical Treatment in EOS

Charles E Johnston MD Anna McClung RN TSRHC, Dallas Tx. Paper #19 ICEOS 2013 Disclosure : CJ Medtronic a,g AMc none

CT lung volumes

concave >

convex

Lung vol 860 cc

PURPOSE: to evaluate <u>anatomic</u> results of treatment, especially in patients too young to perform traditional PFT (<u>physiologic</u> measure of outcome)

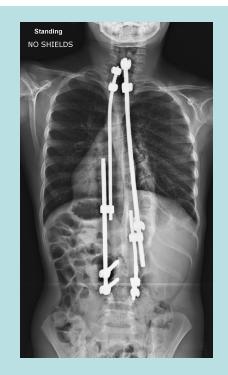
Methods

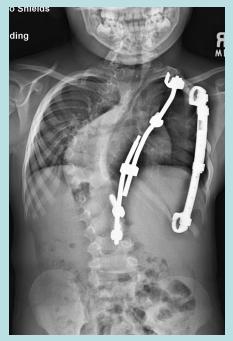
- 20 pts (8 congenital, 12 non-cong.)
- mean age 3.6 yr (0.8-8.8) @ initial scan

(usually w/ MRI)

 F/u scan @ 6.3 yr (2.9-11.4) (IRB protocol = q 2 yr)

Frederick R. Long, MD Robert G. Castile, MD Alan S. Brody, MD Mark J. Hogan, MD Robert L. Flucke, RTT David A. Filbrun, RTT Karen S. McCoy, MD

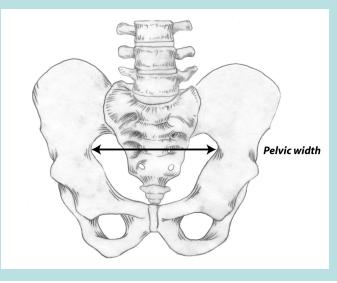

Index terms:

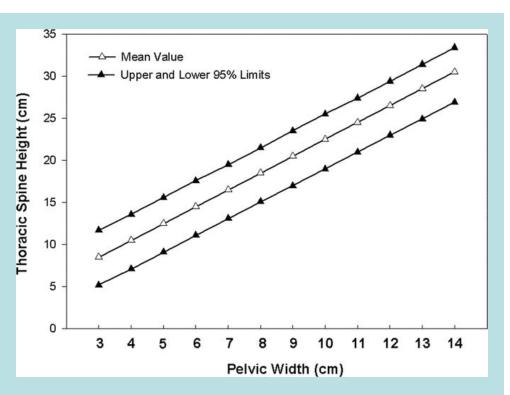

Children, respiratory system Computed tomography (CT), in infants and children, 60.12118 Lung, CT, 60.12118 Lung, function

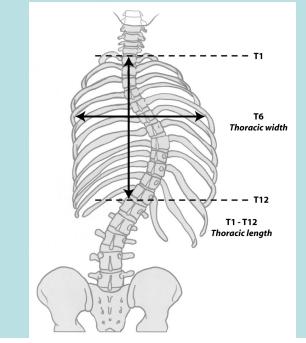
Radiology 1999; 212:588-593

Lungs in Infants and Young Children: Improved Thin-Section CT with a Noninvasive Controlled-Ventilation Technique—Initial Experience¹

- 11 pts spine-based (SB) growth-friendly rx
- 9 pts rib-based (RB)
- CT volumes preop & f/u
- T1-12 height & width, pelvic width
- Curve magnitude (Cobb)


Absolute & %tile CT volume vs age Gallogly, Smith Spine 2004




Standardized Th height & width % iles

Prediction of Thoracic Dimensions and Spine Length Based on Individual Pelvic Dimensions in Children and Adolescents: An Age-Independent, Individualized Standard for Evaluation of Outcome in Early Onset Spinal Deformity

Emans, John B. MD*; Ciarlo, Michelle BS*; Callahan, Michael MD†; Zurakowski, David PhD*

Results - CT Volume (n=20, all 1)

		RB	SB	р
CT volume (cc)	pre	522	889	.004
	f/u	790	1302	.003
	Δ	268	413	.11
	р	<.001	<.001	
Age 1 st CT (yr)		2.8	4.1	.19

- RB 51% increase (p<.001)
- SB 46% increase (p<.001)
- RB pts had significantly smaller pre-tx volume 2° congenital/chest wall dx's and 1st scan @ younger age

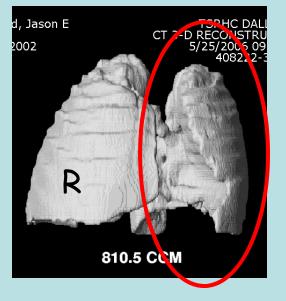
Results T1-12 height

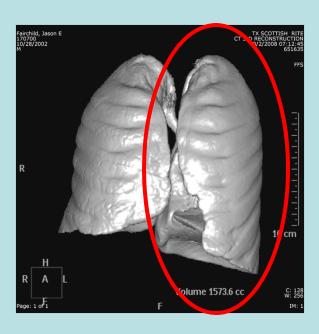
		RB	SB	Р
T1-12 height (mm)	pre	115	139	.15
	f/u	141	165	.14
	Δ	26.2	25.7	n.s.
	р	<.001	.04	

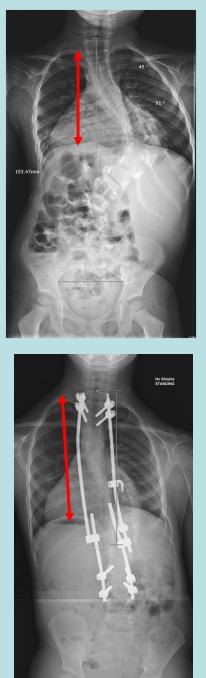
- Absolute length increase 2.5 cm; RB vs SB same
- Increase in absolute length significant for both (esp. RB)
- RB height < SB (cong. dx, younger age @ 1st scan)
- T1-12 length correlated with CTvol pre-tx (r^2 =.64, p=.002) and f/u (r^2 =.58,p=.007)

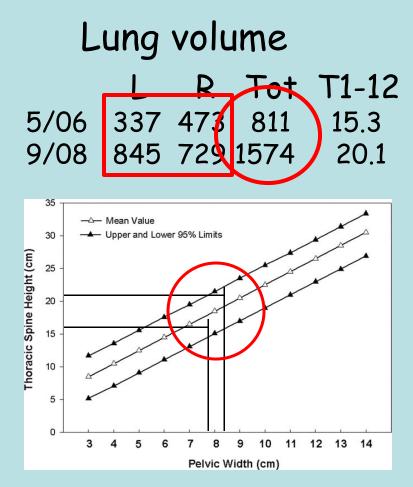
T6 Coronal & Pelvic Width

		RB	SB	р
T6 coronal width (mm)	pre	123	150	.001
	f/u	131.5	157	.004
	Δ	8.6	/.	n.s.
	р	.09	.08	
Pelvic width	pre	65.9	76.7	.06
(mm)	f/u	76.1	88.0	.03
	Δ	10.2	11.2	n.s.
	р	.015	.02	

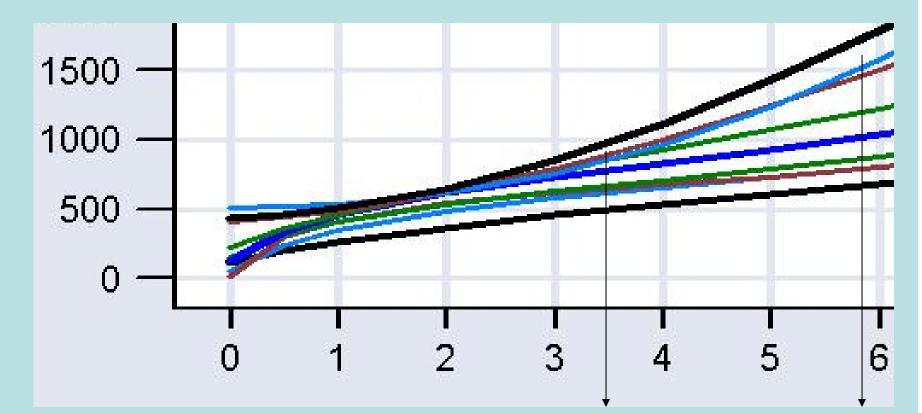

- PW 1 with time/growth (expected)
- •T6 width trend 1 with time
- RB parameters < SB (2° dx and age)
- T6 width correlates best with CTvol (r²=.76, p<.0001 pre-tx, r²=.82,p<.0001 <u>f/u</u>)


Curve Magnitude


		Rib b	ased	Spine	based	р
Cobb (degrees)	pre	60.2		77.9		.09
	f/u	58.7		56.9		n.s.
	Δ	-1.5		-21		.06
	р	n.s.		.01		


- RB constructs -> no correction, SB correction mean 27%
- No correlation between MT Cobb and CTvol pre-op or f/u
- % curve correction -> weak correlation
 (r²=.48, p=.03)

Example

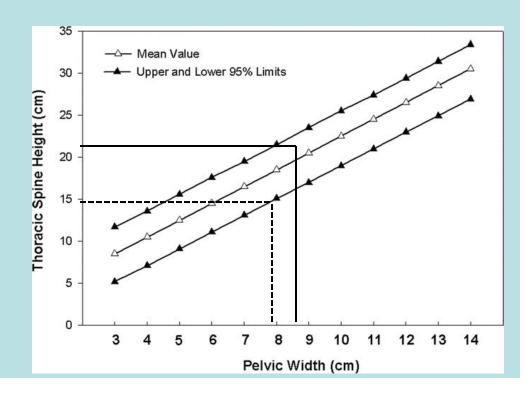


L lung expanded > R Associated with T1-12 height gain 25th→75th %

CT volumes -> unable to show clear effect of Rx 2° "control" data compression

3+6

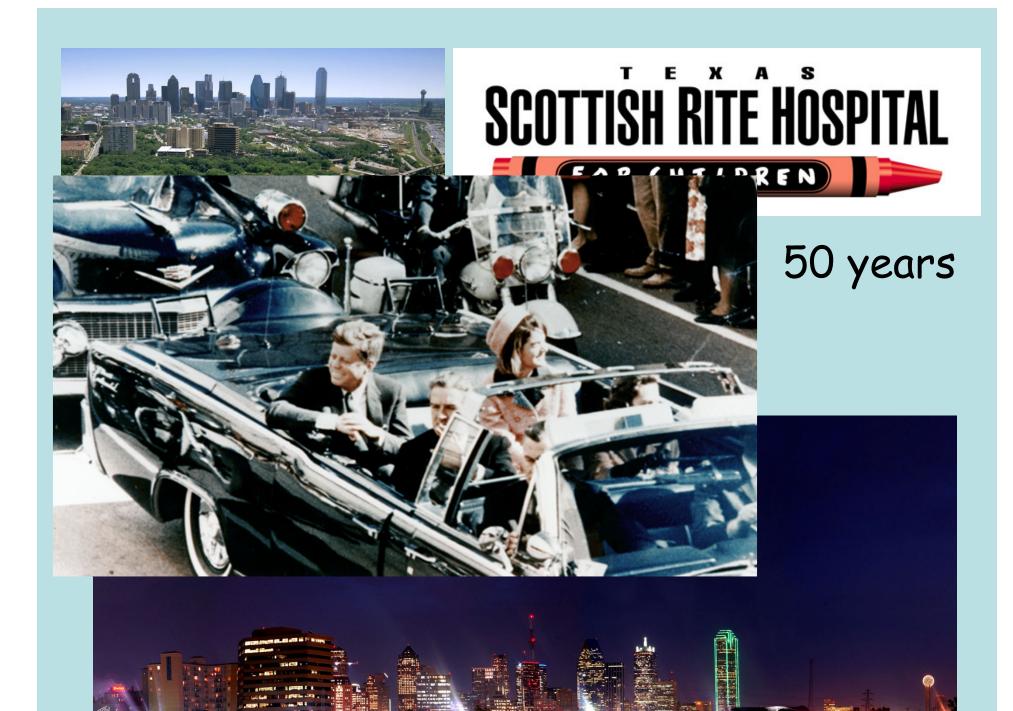
811


5+10

1574

Narrow % ile diff's < 4yr -> difficult comparison to "control" <u>CT vol increase</u> All pts † volume 16-155%

- 3 ↑ > 1 SD
- 10 same < 15D >
- 7↓ >1SD


<u>T1-12 length</u> Preop: all pts @ or <5th %ile F/U : 8/20 > 5%ile (5-60)

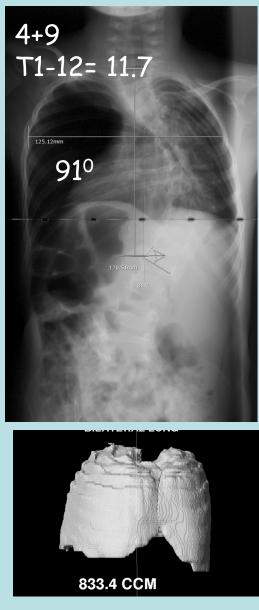
CT volume - Summary

- Objective measure to determine if thorax larger 2° rx + growth
- Effect of RX exceeding expected growth more obvious in thoracic parameters than in CT vol Δ
- Serial data best utilized to control rx in individual patient
- CVCT reproducibility
- Small cohort
- Apply limited control data accurately

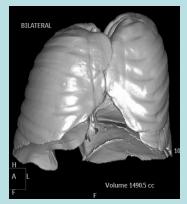
Ability to show significant ∆'s over time due to rx ???



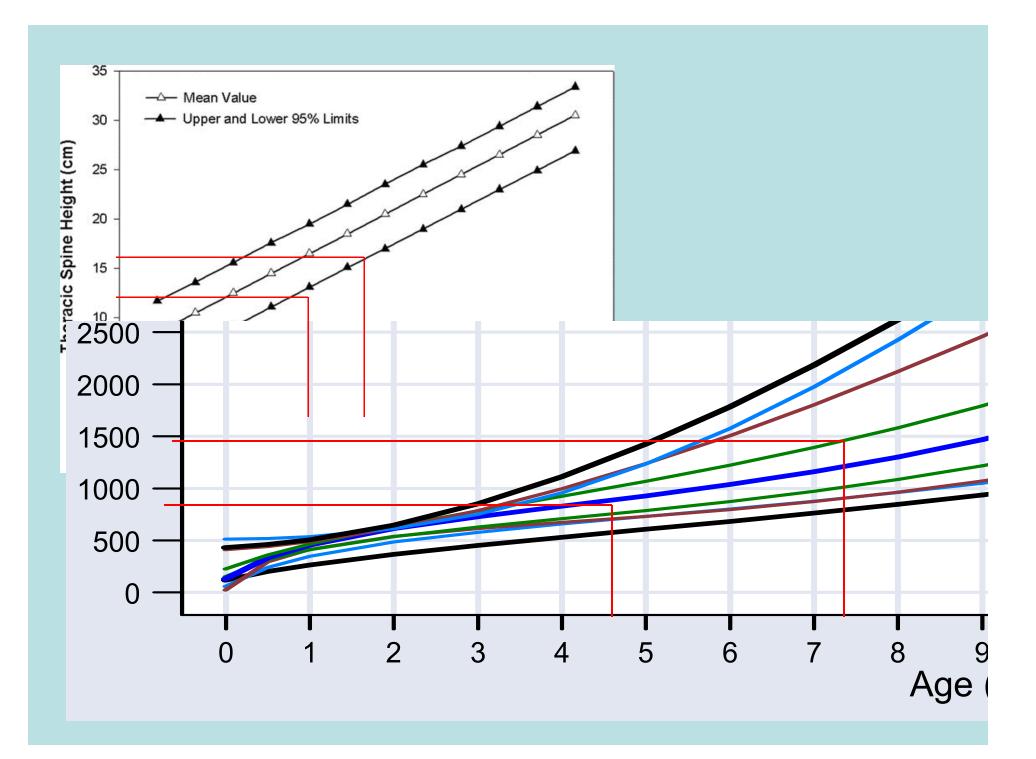
MH Hunt bridge, Dallas A.D. 2012



Pont du Gard A.D. 60


Non-op \rightarrow Operative

T1-12 = 11.7 cm R 399 L 435 = 834cc



T1-12= 15.4 R 679 L 801 = 1480

R	ESULTS		Rib based	Spine based	р
([Cobb degrees)	pre	60.2	77.9	.09
N		f/u	58.7	56.9	n.s.
		Δ	-1.5	-21	.06
		р	n.s.	.01	
	T1-12 height	pre	115	139	.15
	(mm)	f/u	141	165	.14
		Δ	26.2	25.7	n.s.
		р	<.001	.04	
$\left(\right)$	T6 coronal	pre	123	150	.001
	width (mm)	f/u	131.5	157	.004
		Δ	8.6	7.1	n.s.
		р	.09	.08	
	Pelvic width	pre	65.9	76.7	.06
Ŋ	(mm)	f/u	76.1	88.0	.03
		Δ	10.2	11.2	n.s.
		р	.015	.02	
	CT volume (cc	pre	522	889	.004
		f/u	790	1302	.003
		Δ	268	413	.11
		р	<.001	<.001	
	Age 1 st CT (yr)		2.8	4.1	.19

