What Every Surgeon Wants to Know About Pulmonary Issues in EOS

Gregory J. Redding, MD Seattle Children's Hospital Seattle, Washington, USA

Thoracic Insufficiency and Early Onset Scoliosis

 In ability of the thorax to support normal respiratory function and postnatal lung growth

Correlations Between Lung Function Measures and Cobb Angle are Poor in EOS

COBB ANGLE

n=11 r=0.16 p=NS

> *Mayer OH, et al. J Pediatr Ortho* 29:35-38, 2009. Striegl A. *American Thoracic Society* (ATS), 2008.

Best Measures of Lung Function in EOS?

Direct Measures

- Spirometry
- Resp. Muscle Function
- Sleep Study
- Exercise testing
- Blood gas tensions
- Lung vent and perfusion scans
- Tidal volume and respiratory rate

The choice depends on the question!

Indirect Measures

Body Mass Index Echocardiogram What is the most sensitive measure of respiratory changes in EOS? VO2max (exercise)>AHI >FVC>Tidal Volume

AIS = 37Controls = 10Age 13 +/- 1.5 years Cobb angle = $19-45^{\circ}$

What is the best measure of severe EOS?

Severe

▲PaCO₂, Pulmonary Hypertension FVC < 30%</p>

> FVC = 30-40%, MIP < 50% AHI > 5/hr

> > FVC = 40-60% BMI < 50%

FVC = 40-60%

Mild

FVC > 80%

Why measure Forced Vital Capacity?

Low Lung Volumes

Chest Wall <u>Distensibility</u> and Excursion

Respiratory Muscle Force and Movement

Why not measure FVC?

Age dependent, usually > 5 years old
Variability in measurement of FVC:

	<u>Mean week to week</u>	<u>2SD limits</u>	
Normal children	5%	8%	
Asthma	6%	12%	
Cystic Fibrosis	6%	12%	
Scoliosis	?	?	

Factors that contribute to variability: Experience doing the test, age, disease, wellness

> Pelkonen AS, et al. *Pediatr Pulmonol* 29:34-38, 2000. Studnicka M, et al. *Pediatr Pulmonol* 25:238-243, 1998. Sanders DB, et al. *Pediatr Pulmonol*, 43:1142-1146, 2008.

Active vs Passive FVC

Active Awake, Effort Dependent

No active use of Respiratory Muscles, Infant lung functions, OR Measurements

What respiratory measure of EOS will change supportive care?

*Significant p<-05 by paired t-test

Redding G, Makris C, Song K. ICEOS, 2010.

What measure best predicts post-op pulmonary complications in EOS?

<u>Severe</u> Restrictive Lung Disease

Ν	Age (yr)	Cobb (d)	FVC (%)	LOS	% Pulm
21	12-19	82 (40-140)	18-43	18 d	10/15 (66%)
24	9-19	88 (40-129)	13-39	17 d	7/13 (54%)
32	7-17	87 (16-140)	16-39	27 d	6/32 (19%)
183	6-62	75 (45-141)	40-80	-	7/164 (4%)
			<40		6/19 (32%)

Low-risk AIS

5.3-8.4+/-3.5 days

Wazeka 2004, Payo 2009, Rawlins 1996, Gill 2006,* Zhang 2005.

What measure best quantified surgical impact?

- FVC for respiratory reserve
- Chest Wall compliance for change in chest wall stiffness
- Maximum Inspiratory Muscle Strength
- Others? Sleep quality VO2max for exercise tolerance

How do you Determine Long-term Pulmonary Outcomes?

How Do We Improve Pulmonary Outcomes?

- Maximal three-dimensional correction including rotation
- Early onset intervention? Non-invasive approaches?
- Re-orientation of respiratory muscles? Sub-diaphragmatic release?
- Less force with first correction?
- Changes in distraction expansions non-invasively?
- Perhaps with late interventions, pulmonary hypoplasia precludes improvement?

The Role of the Pediatric Pulmonologist in the Management of EOS

- Find one that has an interest in this population.
- Find one that can interact directly with you and discuss the implications of test results.
- Find one who deals with uncertainty well.
- Find one who wants to improve current pulmonary outcomes in these children.
- Find one who is in this business for the long haul.

Summary

- Progressive EOS produces progressive pulmonary limitations and loss of reserve.
- Lung functions are useful to monitor changes over time and with treatment.
- Given the variation from patient to patient with EOS, lung function tests will help dictate care in some patients but not others.
- The lack of improvement in lung function with current surgical techniques calls for further treatment innovations for this group of children.