ICEOS 2014

The Interdependent Relationship between the Thorax and Lung: The Impact of Thoracic Deformity on Respiratory Function During Growth

Olson JC^{1,2}; Glotzbecker MP³; Snyder BD^{1,3}

¹Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center; ²Dept. of Bioengineering, Boston University School of Engineering; ³Dept. of Orthopaedic Surgery, Children's Hospital; Harvard Medical School

Disclosures

Supported by grants from:

- Scoliosis Research Society
- Chest Wall and Spinal Deformity Study Group
- ✓ Synthes Spine, North America
 ✓ NIH R21

Background

Respiration

- Normal Mechanics
- Ventilation thoracic/abdominal excursion
- Diaphragm 85% of ΔV

Background

The Growing Thorax

- Must enlarge for lung growth
 - Rib cage provides width and depth
 - Thoracic spine provides height
- Failure of thorax to grow causes extrinsic, restrictive lung disease

HARVARD MEDICAL SCHOOL TEACHING HOSPITAL KV

Clinical Problem Thoracic Insufficiency Syndrome

- Inability of thorax to support normal respiration or lung growth
- Results in post-natal pulmonary hypoplasia

Thoracic Insufficiency is *Extrinsic*, restrictive lung disease

Clinical Problem

Expansion Thoracoplasty

Optimizing treatment depends on understanding relationship between growth of thorax and growth/development of the lung

Aims

- 1. Create rabbit model for early onset scoliosis that develops pulmonary hypoplasia.
 - a) Characterize the relationships between thoracic deformity vs. pulmonary growth & respiratory function
- 2) Use model to evaluate effect of expansion thoracoplasty on thoracic growth, pulmonary development and respiratory function.

- 1. Prolonged inhibition of thoracic growth will induce pulmonary hypoplasia and respiratory insufficiency
- 2. The extent of thoracic deformity in young growing rabbit influences lung growth and respiratory function in the adult rabbit
- 3. Expansion thoracoplasty will promote growth of the lungs and thorax in proportion to remaining growth potential

Experimental Design

14 wks. Pulmonary development continues in healthy rabbits

Methods: Deformity Model **Rib Tethering – 3 ¹/₂ wks old**

Exposed right thorax

Tethered right ribs 3-9

Post-Op AP X-ray

Methods - Treatment Expansion Thoracoplasty: age 7 and/or 11 wks

Methods

Metrics of Thoracic Deformity

• Scoliosis, (AP projection), θ_s

Maximal deformity angle

- Kyphosis, (lateral projection), θ_{κ}
- Thoracic Rotation (Transverse slice)

 $\theta_M = 2 * \tan^{-1} \left(\sqrt{\tan^2(\theta_S / 2) + \tan^2(\theta_K / 2)} \right)$

Breath-hold CT imaging

- CT scans: 6, 10, 14, & 28 weeks of age
 - Rabbits anesthetized, mechanically ventilated
 - Hyperventilated to induce apnea
 - "Breath-hold" on 3rd breath
- ➢ ETT pressure maintained @ 0,5,15,25 cmH₂O

Lung Volume Measures

CT based measures

- <u>TLC</u> : Aerated lung volume @ 25 cmH₂0 static ETT press.
- <u>FRC</u> : Aerated lung volume @ 0 cmH₂O static ETT press.

Respiratory Volumes

Calculation Lung Mass and Volume

- Segment Lung:
 - Based on tissue density threshold
 - Manually remove esophagus and trachea
 - Obtain total lung volume @ sequential "breath hold" pressures 0-25 cmH₂O
 - Separate left and right lungs
- Hounsfield unit(HU)linearly related to density •
 - HU = 0 equivalent to H₂O
 - HU = -1000 equivalent to air
 - Lung tissue density equivalent water ~1g/mL Air density negligible ~0g/mL
 - $\rho_{voxel} = 1 + (HU/1000)$
- **Calculations:**

$$a_{iir} = \sum_{i} (-Hl)$$

 V_{\prime}

n=1

Methods

PFT's – Vital Capacity

- Raised Volume Rapid Thoracoabdominal Compression (RVRTC)
 - Protocol for Infant PFT's
 - Lungs forcefully deflated from TLC to RV
- Protocol: Anesthetized/Ventilated rabbit
 - Lungs inflated to 25 cmH₂O (TLC)
 - Thoracoabdominal air bladder rapidly raised to 60 cmH₂O
 - Expired air volume recorded (VC)

Methods

Partitioned Compliance/Elastance

Methods **PFT's – Single Compartment Model**

Methods

CT Deformable Image Registration (CT-DIR)

Voxel-by-voxel trajectory of lung parenchyma mapped during inflation on each sequential set of CT images¹

- Local specific volume (sVol = $\frac{\Delta V}{V_{O}}$) ~ strain
- Jacobian determinant of deformation field

Ref: ¹Yin Y, et al.; Med. Physics 2009

Results: Aim 1- Rabbit model of TIS

Thoracic Volume

Aerated Lung Volume and Mass

Diaphragmatic Surface Area

Aim1 – Results

Induced Deformity

SEVERE (θ_M >50° , N=5)

MODERATE ($\theta_M < 50^\circ$, N=5)

- All rabbits with tethered ribs developed thoracic deformity
- Variable expression:
 - Deformity, $\theta_{\scriptscriptstyle M}$, ranged 20° to 71° @ age 6 wks
 - Distinction between rabbits with deformity > 50° vs < 50°

Aim1 – Results

Unilateral Tethering induced Thoracic Deformity

- Severe group spine deformity and TRA progressed significantly during growth
- Moderate group achieved significant spine deformity only
 @ 28 weeks.

Aim1 Results Spinal Deformity in Young Rabbit (6 wks) Predicts: Spine Deformity and Body Weight @ Adulthood

- Spine deformity @ age 6 wks accounted for:
 - \uparrow spine deformity (R² = 0.91, p<0.001) @ 28 weeks
 - $-\downarrow$ body mass (R² = 0.83, p<0.001) @ 28 weeks

Aim1 – Results

Lung growth inhibited by spine deformity

- Lung growth relative to Somatic growth (measured by mass)
- Lung growth significantly depressed (p<0.01) for rabbits with severe spine deformity

Aim1 – Results

Right vs Left Lung Growth Through Adulthood

By age 28 weeks

- Severe Deformity:
 - Constricted right lung
 - Mass 59% of normal
 - Volume 60% of normal
 - Left lung less affected
 - Mass 86% of normal
 - Volume 105% of normal

Moderate Deformity

- Right lung less than normal
- Hypertrophy of left lung

Aim1 – Results Diaphragm surface area

**

80-

Diaphragm S.A. (cm²)

Diaphragm is primary driver (piston) for mass transfer air in/out lung

 Surface area of diaphragm rabbits with severe deformity 76% of normal

Forced Vital Capacity

 FVC in rabbits with severe thoracic deformity 71% normal rabbits (p<0.01)

Aim1 – Results

Elastance

Spine deformity @ 6 weeks effected the elastance of the lung parenchyma at maturity

Analytic modeling - Results

Specific Volume (volumetric strain) varies with gravity dependent height

- Gravity dependent expansion in Prone rabbit:
 - initial-inspiration (0-5cmH₂O) sVol posterior > anterior
 - mid-inspiration (5-15cmH₂O) sVol anterior > posterior (p<0.05)

-⇔-15to25

- Gravity accounts for 25% variability sVol as a function of height
- Intrinsic mechanical properties of lung and thorax passively controls distribution of airflow that accounts for regional variation in lung expansion determined by gravity and inspiratory pressure

Aim 1 Results

Comparison of sVol Normal vs. TIS

- Thoracic Deformity affects Gravity dependent expansion Right and Left lung
- Dependent portion of lung contributes more to pulmonary reserve capacity
- This reserve capacity is diminished by thoracic deformity

Histology

Disease

Normal

Diseased lung: thinned alveolar walls, significantly greater airspace fraction (emphysema), poor RBC perfusion (indicated by bright pink cells without nuclei.)

Histo-morphometry Parenchymal Structure

The bronchiolar epithelium (airway) terminates at center of an acinus within a *pulmonary lobule*. \blacktriangleright The distance from a respiratory bronchiole and closest edge of acinus is constant.

Histo-morphometry Radial Alveolar Count

- RAC: # of Alveoli between respiratory bronchiole and edge of acinus
 - Indicates acinar complexity & pulmonary hypoplasia
 - Decreased RAC is indicative of hypoplasia

Image: Histology (H&E) rabbit acinus with

HARVARD MEDICAL SCHOSpiratory bronchiole

Histo-morphometry – RAC

	Left	Lung	Right	Lung
Normal	12.5	(2.0)	12.1	(1.7)
Moderate	12.0	(1.2)	12.0	(1.9)
Severe	7.7	(1.8)**	8.3	(1.4)**

** - ANOVA P<0.01 compared to Normal and Moderate groups

Significant decrease RAC occurs in both lungs of rabbits with SEVERE deformity (curve > 50°)

Aim1 – Results Summary

Spine Deformity @ 6 wks Predicts Pulmonary Outcomes @ 28 wks

Deformity (6 wks) vs.			
Outcomes (28 wks)	r	R ²	
Lung Mass - Right lung - Left lung	-0.87 -0.89 -0.78	0.76** 0.80*** 0.61**	
Total Lung Capacity - Right lung - Left lung	-0.70 -0.80 -0.33	0.50* 0.64** 0.11	
Resp. Elastance	0.91	0.83***	
FVC	-0.56	0.31*	
Diaphragm S.A.	-0.89	0.80***	

significance

***-p<0.001

**-p<0.01,

*-p<0.05,

RESULTS: Aim 2 Expansion Thoracoplasty

Total rib expansion Early treatment [2.7 cm] > Late [2.0 cm] (p<0.001)

Boston Children's Hospital Orthopedic Center

Aim2 – Results

Baseline Deformity Among Groups

- Spine deformity @ initiation treatment inconsistent among groups
 - Late treatment less deformity than Early or Disease
- Analysis of Covariance performed to compensate
 - Controls for initial differences in deformity among groups

Progression of spine deformity and TRA during growth

- Thoracic deformity Early and Late Treatment groups lower than Disease control (p<0.01) by completion of growth
- Spine deformity Disease control > Normal throughout growth (p<0.01)
- TRA Normal & Treatment groups < Disease control @ age10 & 14 wks

Aim2 – Results

Progression Spine Deformity: Disease vs. Treatment

- Expansion thoracoplasty ameliorates expected spine deformity in untreated rabbits at maturity
- Slopes fit lines for Treatment groups different from Disease (p<0.01)</p>

Changes in Lung Mass Among Groups with Growth

- For Severe-Disease rabbits, Lung mass normalized by body mass was less than Normal rabbits at all time points (p<0.05)
- Overall treatment did not significantly improve normalized lung mass
- BUT Significant gains in lung mass with treatment did occur after 14 wks.
 - Poor gain in lung mass between10-14 wks. may reflect ill affects of surgical insult

Mass and volume of segmented left and right lung during growth for treatment and disease groups

- @ 28 weeks Early & Late Treatment groups and Severe Disease group had decreased right lung Mass and Volume vs. Normal rabbits (p<0.001)
- After 14 wks, treatment altered the trajectory of right lung growth from that of severe deformity to that of moderate deformity

Aim2 – Results

Treatment stabilized expected decline in lung growth

- Slope of relationship lung mass @ maturity as function of thoracic deformity in growing rabbit altered by Early Treatment i.e. Slope early tx less neg. than disease control (ANCOVA p<0.05)
- <u>Tipping point</u> only for θ_M > 45° did early treatment allow for greater lung growth (mass) than expected relative to disease control

Surface Area of Diaphragm

Expansion Thoracoplasty had little effect on surface area of diaphragm

- Surface area diaphragm in Early and Late Treatment rabbits 80% of Normal (p<0.001)
- Untreated Disease Control rabbits 77% Normal (p<0.001)

Forced Vital Capacity

- Expansion Thoracoplasty did not improve FVC
- Mean FVC Early Tx rabbits 70% Normal (p<0.05), while Late Treatment rabbits 86% Normal.
- Disease Control rabbits 69% Normal (p<0.01)

Aim2 – Results

Partitioned Elastance

Regional Pulmonary Volumetric strain (ΔV normalized by initial aerated lung volume,V₀)

Treatment normalized regional strain pattern

Restores reserve capacity that was diminished by the thoracic deformity

Histomorphonetry Treated lungs approach Normal

Disease

Normal

Expansion Thoracoplasty

<u>Treated Group</u>: Alveolar air space fraction approaches normal, Capillaries adjacent to alveoli prominent

Aim 2 Results

sVol, Left vs. Right lung

- In Disease rabbits sVol left < right lung (unexpected result)
 - 15% of variability in sVol
 - Implies mechanics of contralateral left lung are abnormal
 - ↑ residual volume in left lung with ↓ expansion related to globally rigid chest
- In Treatment group sVol left ≅ right

Conclusion

Hypotheses supported:

- Unilateral rib tether induces scoliosis
- Restriction of thorax creates post-natal pulmonary hypoplasia
- Spine/chest wall deformity present @ 6 wks (in growing rabbit) influences lung volume and respiratory function @ 28 wks (in adult rabbit)
- Rabbit model with constricted hemithorax creates TIS equivalent to that seen in growing children

	Residual Volume (% Predicted)	Vital Capacity (% Predicted)	Cobb Angle (degrees)	Left:Right lung (diff. normal)
TIS Patients	139 +/-40.3	78.3 +/- 29.6	55 +/- 16.4	0.46 +/- 0.41
TIS Rabbits	303 +/-301	73.6 +/- 12.9	41 +/- 11.1	0.36 +/- 0.20

Reference: Emans (2005) Spine; OH Mayer MD, personal communication

Conclusion

- Kyphoscoliosis was corrected by expansion thoracoplasty performed early or late
- Expansion thoracoplasty performed earlier, followed by subsequent distraction of hemithorax, stabilized the decline in lung growth better than expansion thoracoplasty performed later, but does not normalize function
 - Expanded thorax remains rigid \downarrow respiratory compliance
 - Surface area of diaphragm remains smaller
- Rabbit model similar to clinical studies:
 - Improved Cobb angle
 - 1 yr post-op: \downarrow %VC , \uparrow % RV ¹
 - 3 yr post-op: \uparrow TLC (\uparrow % RV, but \leftrightarrow %VC)^{2,3}

Ref: ¹Mayer J. Ped. Ortho. 2008, ²Motoyama Spine 2006, ³Gollogly J. Ped. Ortho.

Brian.Snyder@childrens.harvard.edu

Thank you

