Proximal Rib versus Proximal Spine Anchors In Growing Rods: Early Results of a Prospective Multicenter Study

Michael G. Vitale MD, MPH; Mark Sullivan BA; Evan Trupia, BS; Hiroko Matsumoto, PhDc; Sumeet Garg MD; John Flynn MD; Peter F. Sturm MD; Francisco Sanchez Perez-Grueso MD; David P. Roye Jr MD; David L Skaggs MD

NewYork-Presbyterian Morgan Stanley Children's Hospital

Columbia Orthopaedics

Columbia University Medical Center

Michael G. Vitale, MD MPH

Royalties: Biomet Consultant: Stryker, Biomet Research Support: CWSDRF, SRS, POSNA; OREF Travel Support: CSSG, FoxPSDSG Other: CSSG - BOD POSNA – BOD IPOS- Chairman

Supported by a Grant from the Scoliosis Research Society

Improving the Evidence Base in EOS

Development of a Research Infrastructure Via five parallel efforts

Proximal Fixation is a Topic of Significant Equipoise

Corona et al. Evaluating the Extent of Equipoise among Treatment Options for Patients with Early Onset Scoliosis. JBJS 2013

- 1. In idiopathic 2-3yo with 90 degree curves, should we use <u>spine or rib</u> based distraction?
- 2. In 3-6yo with severe kyphosis, should we use **spine or rib** based distraction?
- 3. In children >12yo who have finished lengthenings, should we observe, remove growing constructs, or fuse?
- 4. In idiopathic children <9yo with curves >60 degrees, what should the lengthening intervals be?
- 5. In idiopathic 9yo with 30-40 degree curves who have progressed 30 degrees (last 6 months), should we treat conservatively, use growth modulation (VBS), or other?
- 6. In high tone neuromuscular children with 90 degree curves who are ambulatory but have pelvic obliquity, should we use pelvic or non-pelvic fixation?

Correction and Complications in the Treatment of EOS: Is there a Difference between Spine vs. Ribbased Proximal Anchors?: a retrospective study

Michael G. Vitale MD MPH; Howard Y. Park BA; Hiroko Matsumoto MA; Daren J. McCalla BS; David P. Roye MD; Behrooz A. Akbarnia MD, David Skaggs MD

Combined Project of GSSG and CSSG

*

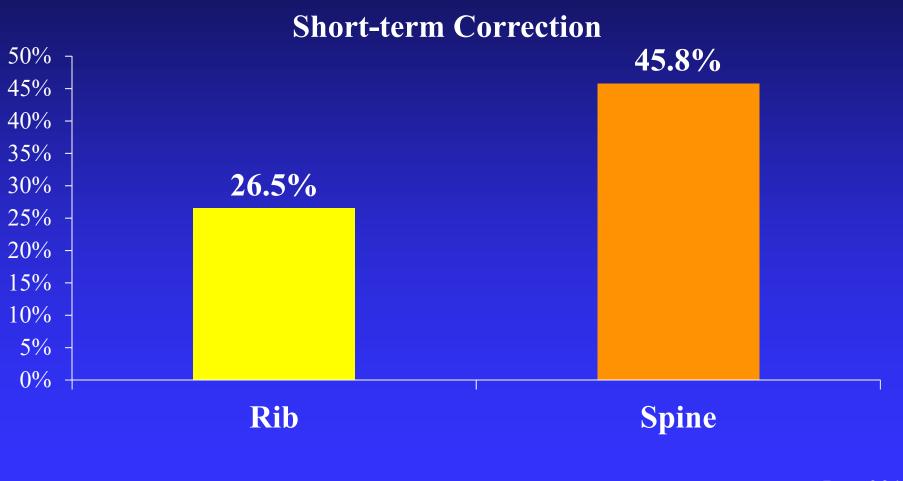
NewYork-Presbyterian Morgan Stanley Children's Hospital

Columbia Orthopaedics

Columbia University Medical Center

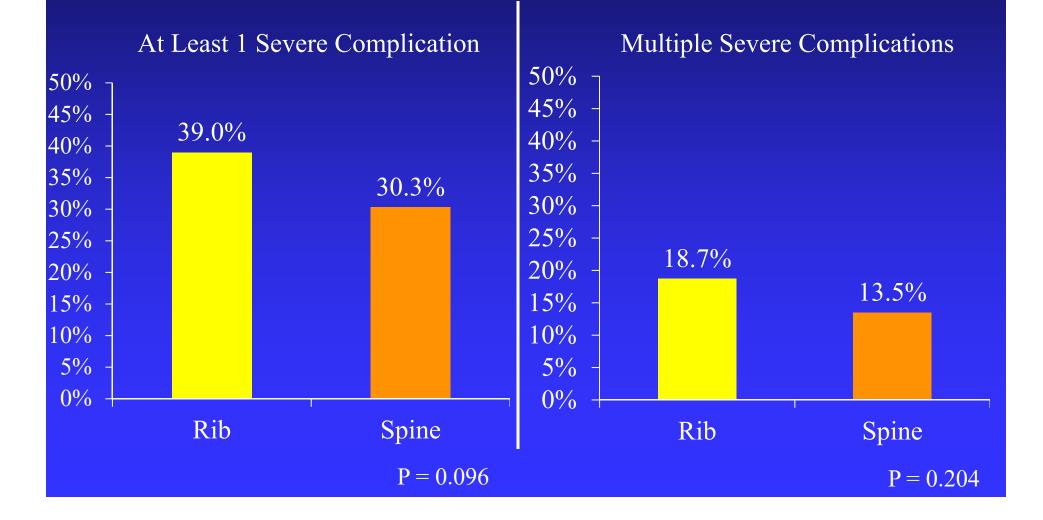
Retrospective Study

No Difference in Age or F/U


		Rib	Spine
GSF Growing Spine Foundation	GSSG	29	155
dation	CWSDSG	153	0

	Rib	Spine
Ν	182	155
Age at Index Surgery	5.1	5.9
Mean F/U from Index	5.4	5.2

337 patients at 5 years after surgery


Spine-based proximal anchors achieve greater short-term (<1yr) Cobb correction

P < .001

More Grade I Complications in Rib Group but no difference in rates of Grade II or III

Severe (Class 2 or 3): Complications requiring unplanned trip to OR, hospitalization, or change in treatment plan

Conclusions- Retrospective

1. Spine-based proximal anchors superior with respect to acute and long-term Cobb correction

2. Rib-based proximal anchors associated with more complications, but no difference in complications which change treatment

Limitations- Retrospective Study

- 1. Complications defined differently between study groups
- 2. Hard to stratify apples vs apples?
 - Are patients equivalent;
 - Implant characteristics
 - Difference is Study Group Protocols

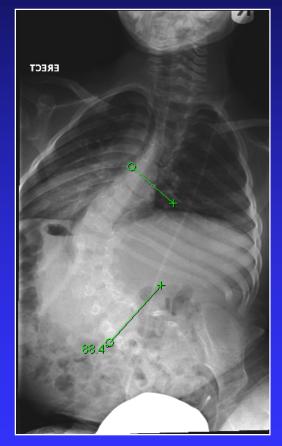
Impetus for <u>prospective trial</u> of Rib vs. Spinebased proximal anchors

Purpose: Prospective Study

To compare outcomes of **RIB** versus **SPINE** based <u>Proximal Anchors</u> in growing instrumentation surgery.

Methods

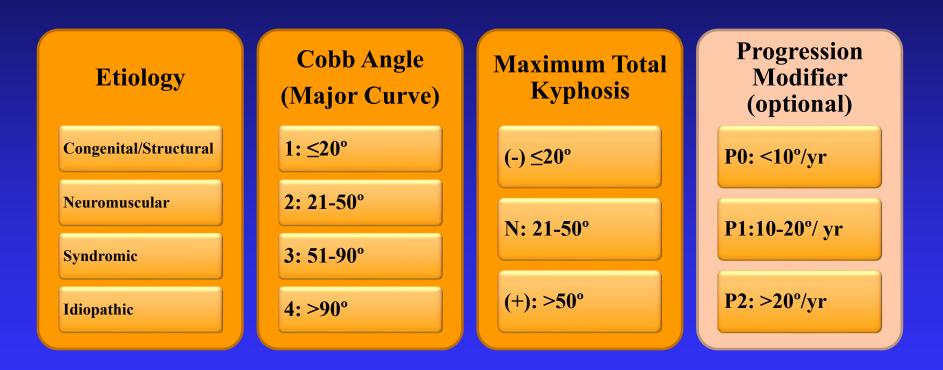
Design:


Prospective, multi-center study of growing instrumentation surgery

Participants:

- •Inclusion:
 - EOS
 - 3.0 9.9 years of age
 - Cobb > 40°
 - Undergoing rib or spine based proximal anchor growing instrumentation
 - Able to Complete EOSQ (English or Spanish)
- Exclusion:
 - Prior spine surgery
 - Guided-growth constructs, MCGR

Outcomes:


- Cobb correction (6 mo post-op):
- Complications over time
- HRQoL (EOSQ-24 6 mo post-op)

Patient Characteristics

Total (n) = 77	Rib Anchors	Spine Anchors	P-value
Subjects (n)	60	17	
Age (yo)	6.6 ± 2.0	6.7 ± 1.5	0.858
Gender	40.0% male	35.3% male	0.730
Weight (kg)	19.5 ± 6.8	20.4 ± 5.3	0.644
Height (cm)	108.0 ± 18.2	110.6 ± 12.1	0.652
Sitting Height (cm)	55.2 ± 7.9	63.8 ± 15.6	0.054
Arm Span (cm)	112.9 ± 17.4	114.4 ± 16.2	0.823
Kyphosis (deg)	47.6 ± 24.6	44.4 ± 15.3	0.709
Cobb (deg)	66.9 ± 15.1	73.6 ± 14.0	0.129
Follow up (years)	0.97 ± 0.55	1.09 ± 0.57	0.446

Analyzed Correction by The Classification for Early Onset Scoliosis

No Differences in C-EOS

Total (n) = 77	Rib Anchors	Spine Anchors	P-value
Etiology (72)	60	17	0.433
Congenital (C)	16.7% (10)	5.9% (1)	
Neuromuscular (M)	50.0% (30)	41.2% (7)	
Syndromic (S)	16.7% (10)	23.5% (4)	
Idiopathic (I)	16.7% (10)	29.4% (5)	
C-EOS Cobb (56)	44	16	0.718
2: 20-50 (deg)	13.6% (6)	6.3% (1)	
3: >50 – 90 (deg)	81.8% (36)	87.5% (14)	
4: > 90 (deg)	4.5% (2)	6.3% (1)	
Kyphosis (21)	11	10	0.625
(-): < 20 deg	7.1% (1)	9.1% (1)	
N: 20 – 50 deg	57.1% (8)	72.7% (8)	
$(+): > 50 \deg$	35.7% (5)	18.2% (2)	

Surgical Characteristics

Total (n) = 77	Rib Anchors	Spine Anchors	P-value	
Subjects (n)	60	17		
Proximal Anchors	3.2 ± 1.6	4.9 ± 1.3	< 0.001	
Instrumentation Type	57 VEPTR 3 GR	2 VEPTR 15 GR		

No significant difference in Cobb angle correction between patients who received rib vs spine anchors

	Rib	Spine	P-value
Subjects (29)	17	12	
Pre-Op Cobb	64.8 ± 20.0	75.3 ± 12.6	0.121
6 mo Cobb Correction (%)	32.5 ± 26.8	39.8 ± 19.2	0.426

No significant difference in the QoL EOSQ scores between patients who received rib or spine anchors

	Rib	Spine	P-value
Subjects (25)	20	5	
Pre-Op EOSQ QoL Domain	63.9 ± 22.9	74.7 ± 22.7	0.354
6 mo Score Change (%)	7.0 ± 26.5	-6.2 ± 31.1	0.349

Proximal Device Migration

23 Patients total had > 1.2 years follow up. Of those patients 4 had a proximal device migration

	Rib Anchor	Spine Anchor
Subjects (23)	18	5
Device Migration Events	4 (22%)	0

Implant Density

Of 18 Patients with Rib Anchors with > 1.2 years follow up, no patient with 5 or more proximal anchors experienced migration

	≥ 5 Prox Anchors	3 – 4 Prox Anchors
Subjects (18)	4	14
Device Migration Events	0	4
	0%	29%

Complications: All Device Related

Subjects (12)	VEPTR/Rib (11)	TGR/Spine (1)
Total CCx	14	1
Grade I	8	1
Device Migration Loss of IONM Spine Infection Rib Fracture Hardware Failure	4 1 1 1	1
Grade II Device Migration Hardware Failure	5 4 1	
Grade III	1	
Spine Infection	1	

Conclusions: Rib Vs Spine Prospective

- No difference in Cobb angle Correction
- Only complication in Spine Anchor group consisted of distal rod loosing from pelvic anchor
- 5 or more rib anchors protective against proximal hardware migration

Limitations

- Early results with limited follow up
- Prospective but non randomized study may still reflect biases in patients and also in differences in study group reporting
- Do we need a RCT?

THANK YOU

Michael G. Vitale, MD MPH

mgv1@columbia.edu

