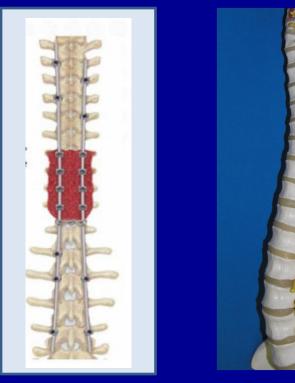
Metallosis is a complication of Titanium Growth Guidance Sliding Device LSZ-4D for early-on-set scoliosis treatment

Wai Weng Yoon¹, Elena Lukina²

Aleksandr Laka³, Mikhail Kollerov⁴, Mykhamad Sampiev³, Peter Mason², Paul Wagstaff², Hilali Noordeen¹, Gordon Blunn⁵

1 – Royal National Orthopedics Hospital, London, UK

2 – Kingston University, London, UK 3 – Central Children's Clinical Hospital, Center of Scoliosis Correction, Moscow, Russia 4 – "MATI"-RSTU, Russia 5 – University College London, UK

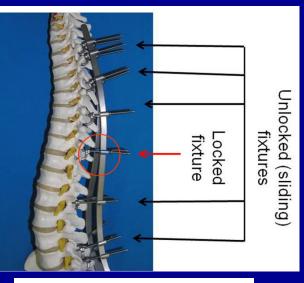


Instrumentation for early-on-set Scoliosis treatment

Growing rods

Shilla (Medtronic, USA) LSZ-4D (Conmet, Russia)

Periodic extensions are required (at least twice per year)


MAGEC (Ellipse, USA)

Movement of rods against fixtures in sliding devices might result in excessive wear debris and metallosis The aim of our study was to <u>evaluate the long-term</u> <u>complications</u> and to <u>reveal the content of metal ions in the</u> <u>blood and tissues</u> after implantation of LSZ-4D sliding device made of titanium alloy (Ti6Al4V)

Study design: retrospective, Single clinical center

study (Children's Hospital 38, Moscow, Russia)

LSZ-4D (Conmet, Russia)

Clip

Rod

Hook

Study group of patients:

25 patients (3m, 22 f) with LSZ-4D sliding devices

Age at primary surgery: 11.4 ± 1.2 years;

LSZ-4D included: **2 rods** (6x4mm) and 40 fixture elements (20 ± 4 hooks and 20 ± 4 clips).

Material of device: Ti6Al4V;

Number of operated levels: 10 ± 2

Implantation time: 6±2 years

Control group of patients:

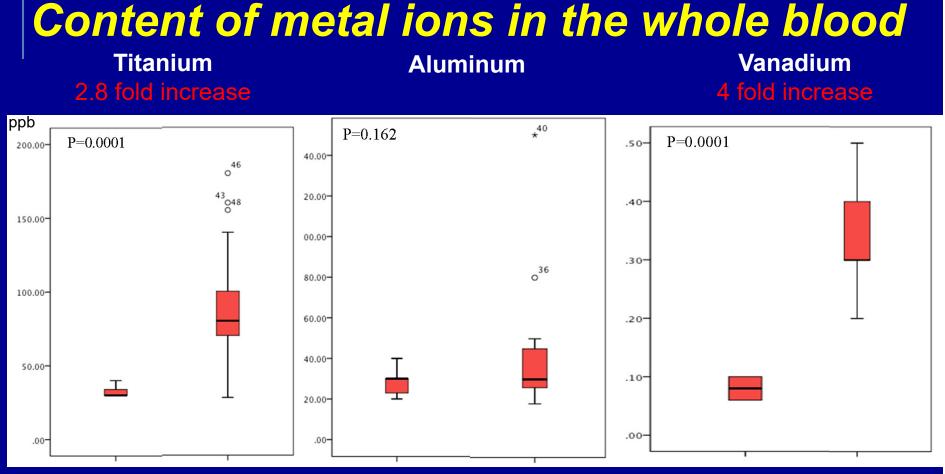
10 patients (1m, 9 f) without any implanted devices

Age : 11 ± 1.2 years

Methodology:

Content of Ti, AI and V ions in the whole blood and tissues was measured by ICP-MC on Nexion 300D (Perkin Elmer, USA)

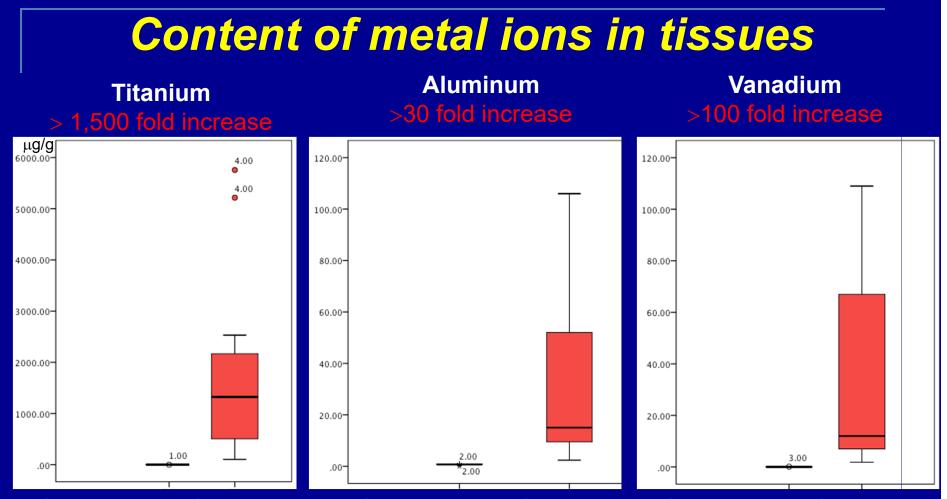
Results of correction			
Preoperative Cobb's angle, mean (range)	Number of patients	Postoperative Cobb's angle (3 year follow-up), mean (range) °	Correction rate
45 (30-50) °	8	9 (5-30) °	
85 (46-132) °	17	23 (17-50) °	


Long-term complications

5 patients had metallosis related complications:

- 2 seromas;
- 1 fistula without inflammation;
- 1 seroma accompanied by pyrexia?infection
- 1 fistula with inflammation
- 4 patients had rods breakage

Conservative treatment


Revision surgery

Control group Study group Control group Study group

Control group Study group

- Patients who developed complications did not have any higher content of metal ions
- Similar increase of metal ions in patients' blood was reported by Kasai et al (Spine,2003), Richardson et al (Spine, 2008), Cundy et al (Spine,2013) after implantation of traditional fusion spinal instrumentation

Control group Study group Control group Study group Control group Study group
These values are much higher compared to those reported (30 fold for Titanium)
previously (Wang et al, Spine, 1999) for spinal implants;

It may be assumed that such high content of metal debris could be the reason of local clinical manifestations

Conclusions:

5 of 25 patients with implanted sliding LSZ-4D devices made of titanium alloyTi6Al4V developed seromas or fistulas in the lumbar part of the spine. All patients had significantly increased levels of metal ions in the blood and tissues.

Limitations of the study:

Only applicable to the described sliding device since the volume of wear debris depends on the design of sliding device, wear resistance of used material, quantity of fixture elements, rod length.

Recommendations:

The level of metallosis needs to be characterised and understood. In order to completely exploit the benefits of sliding instrumentation application of biocompatible wear resistant ceramic coatings might be beneficial