Spinal Growth In Normal Children Between 3 And 11 Years Old Using 3D Reconstruction: A Longitudinal Study

Patrick Tohmé, Leonie Tremblay; Marjolaine Roy-Beaudry, MSc; Marie Beauséjour, PhD; Hubert Labelle, MD; Stefan Parent, MD, PhD

Disclosures

- Work supported by the Academic Chair in Pediatric Spinal Deformities of CHU Ste-Justine
- Stefan Parent MD, PhD is consultant for EOS-Imaging, DePuy Synthes Spine and Medtronic and Shareholder of Spinologics
- Hubert Labelle is Shareholder for Spinologics
- Other grant support include SSSF, CIHR, NSERC, OREF, DePuy Synthes Spine and Medtronic

INTRODUCTION

What do we know about normal growth?

- Not a lot of studies
- Difficult to have precise images
- Radiological markings, imprecise measurements
- Influence of pathology on normal
- 3D Reconstruction data not existent

INTRODUCTION

Growth is a succession of acceleration and deceleration phases and a perfect knowledge of normal growth parameters is mandatory to understand the pathologic modifications induced on a growing spine by an early onset spinal deformity."- Dimeglio A^[1]

[1] Dimeglio A, Canavese F, The growing spine: how spinal deformities influence normal spine and thoracic cage growth. Eur Spine J. 2012 Jan;21(1):64-70. doi: 10.1007/s00586-011-1983-3. Epub 2011 Aug 30.

Study Objectives

A) Measure normal values for:

- Total height
- Vertebral dimension
- Kyphosis
- Lordosis

B) Calculate growth rate per month for the age categories

METHODS

EOS Imaging x-rays of all patients seen between 2007 and 2014 at the spinal clinic were reviewed

METHODS

All asymptomatic patients with a curve of less than 10° and more than one visit were identified,

Absence of pathology with spinal growth influence

PA and Lat calibrated radiographies were used for 3D reconstruction of the spine, using Idefx.

METHODS

Values for total height, vertebral dimension, vertebral growth, kyphosis and lordosis were calculated.

Vertebral heights at every level for each age category

8

3D Height

3D Height

3D Height

Spinal Heights T1-S1 (posterior)

□ <u>Total height: (p < 0.01)</u>

- 1. 3-5.9 yo: 280.5mm ±14.8mm
- 2. 6-7.9 yo: 307.9mm ±15.0mm
- 3. 8-11 yo: 332.9mm ±26.1mm

- Growth rate/month:
 3-5.9 yo: 1.19mm ±0.40mm
 6-7.9 yo: 1.13mm ±0.23mm
- 3. 8-11 yo: 1.20mm ±0.66mm

CONCLUSION

First attempt to measure spinal growth in followup patients under the age of 11 years

Normal database

CONCLUSION / Futur Objectives

Help for the elaboration of a spinal standard growth curve

predict spinal length at maturity

- spinal height changes in pathologic conditions.
- Evaluate impact of Tx on pathologic conditions

44e réunion annuelle de la Société de la Scoliose du Québec

Thanks to the team

- Marjolaine Roy-Beaudry
- Patrick Tohmé
- Léonie Tremblay
- Marie Beauséjour
- Dr. Hubert Labelle
- CHU Sainte-Justine

Centre de

Recherche du CHU Sainte-Justine Le centre hospitalier

universitaire mère-enfant

Pour l'amour des enfants

Université de Montréal

Bibliography

- Dimeglio A, Canavese F, The growing spine: how spinal deformities influence normal spine and thoracic cage growth. Eur Spine J. 2012 Jan;21(1):64-70. doi: 10.1007/s00586-011-1983-3. Epub 2011 Aug 30.
- Diméglio A, Growth in pediatric orthopaedics. J Pediatr Orthop. 2001 Jul-Aug;21(4):549-55.
- Sarwark J, Aubin CE. Growth considerations of the immature spine. J Bone Joint Surg Am. 2007 Feb;89 Suppl 1:8-13.
- Santiago RC1, de Miranda Costa LF, Vitral RW, Fraga MR, Bolognese AM, Maia LC. Cervical vertebral maturation as a biologic indicator of skeletal maturity. Angle Orthod. 2012 Nov;82(6):1123-31. doi: 10.2319/103111-673.1. Epub 2012 Mar 14.
 - Cundy -P, Paterson D, Morris L, et al. Skeletal age estimation in leg length discrepancy. J Pediatr Orthop 1988;8:513-5.
- Labrom RD. Growth and maturation of the spine from birth to adolescence. J Bone Joint Surg Am. 2007 Feb;89 Suppl 1:3-7.
- Olgun ZD1, Ahmadiadli H, Alanay A, Yazici M. Vertebral body growth during growing rod instrumentation: growth preservation or stimulation? J Pediatr Orthop. 2012 Mar;32(2):184-9. doi: 10.1097/BPO.0b013e3182471915.
- Byrd SE, Comiskey EM. Postnatal maturation and radiology of the growing spine. Neurosurg Clin N Am. 2007 Jul;18(3):431-61.
- Labelle H, Aubin CE, Jackson R, Lenke L, Newton P, Parent S. Seeing the spine in 3D: how will it change what we do? J Pediatr Orthop. 2011 Jan-Feb;31(1 Suppl):S37-45. doi: 10.1097/BPO.0b013e3181fd8801.
- Stefan Parent, Carl-Éric Aubin, Xavier Jodoin, Jérémie Thériault, Peter Newton, Larry Lenke, Roger Jackson, Hubert Labelle. Normal values for the Da Vinci representation in asymptomatic adolescents.
- Jean Dubousset, Brice Ilharreborde, Jean-Charles Le Huec. Use of EOS imaging for the assessment of scoliosis deformities: application to postoperative 3D quantitative analysis of the trunk.May 2009 European Spine Journal July 2014, Volume 23, Issue 4 Supplement, pp 397-405