

The Children's Hospital of Philadelphia* Hope lives here. Center for Thoracic Insufficiency Syndrome

The Etiology of Thoracic Insufficiency Syndrome in Neuromuscular Scoliosis based on <u>Quantitative</u> Dynamic Lung MRI (QdMRI)

Campbell, RM, Udupa, J*, Flynn, J, Mayer, H, Nance, M, Panitch, H, Wang, Wei-Hsun, Tong, Y*, Wu, I*, Baldwin, K, McDonough, J, Mong, A. Division of Orthopaedics, Pulmonary, Surgery, Radiology CHOP, *Medical Image Processing Group, Dept. Radiology, University of Pennsylvania

Disclosures RMC

- Grant Support
 - National Organization of Rare Disorders (NORD)
- NORD Medical Advisory Committee member
- Spinal Consultant to the FDA
- Advocate for inventors/companies trying to develop safe and effective devices for children

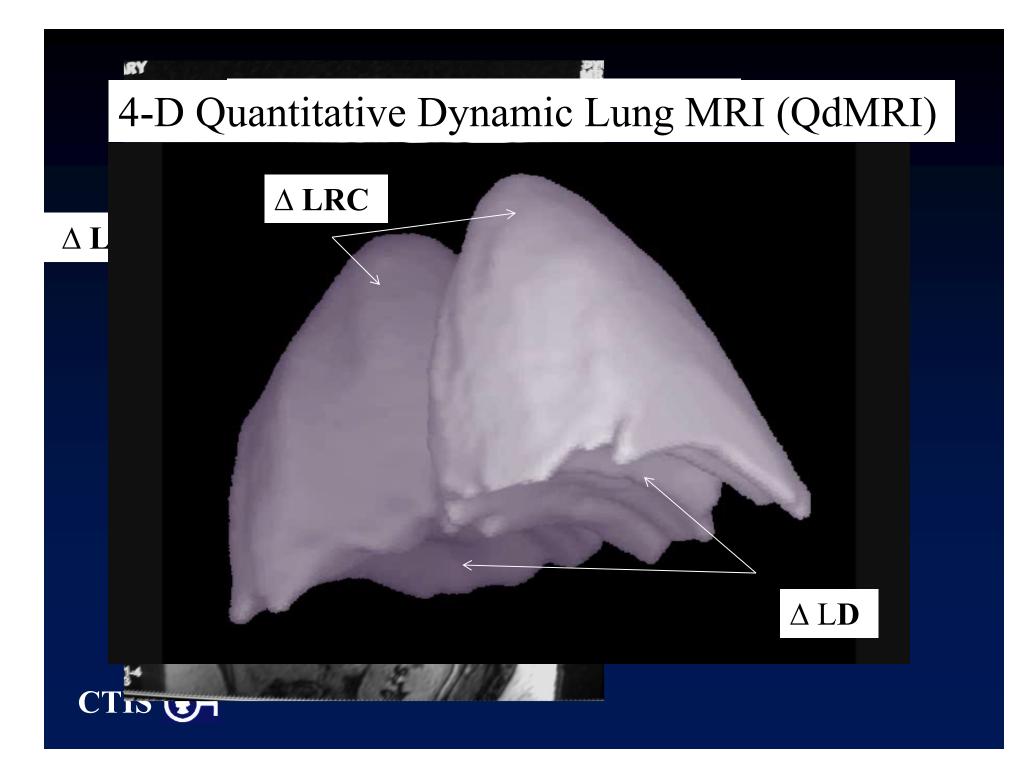
Thoracic Insufficiency Syndrome in neuromuscular scoliosis

- The thorax fails to support normal respiration or lung growth
 - Because of muscle weakness
 - Because of increased thoracic disability from deformity

Avg age 7.9 yrs, <u>5 NM scoliosis pts</u>

Eifel Tower VEPTR constructs

- Avg f/u 2.13 yrs
- Scoliosis 75° preop,
 45° f/u.
- SAL .84 preop, .96 at f/u.
- Pelvic obliquity19.6° f/u 13.6°
- 104-102-104-102-104-


Complications: 2 rib cradle migrations

Dynamic Lung MRI 2 preop only, 3 pre and post op

Hypothesis

- The concave side would be more obstructed with less change in volume with respiration
 - Renal motion more obstructed
- The convex side (rib hump)would have less rib cage volume changes with respiration
 CTIS OH

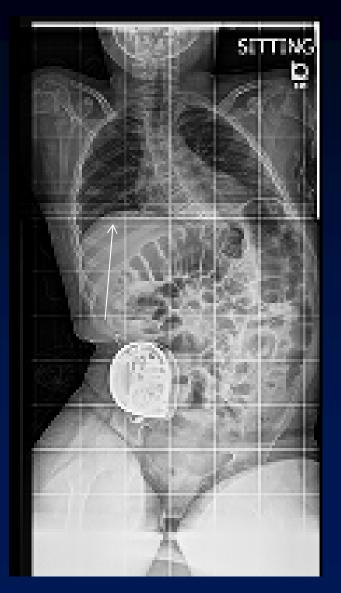

Preop QdMRI (5 pts)

Concave side

- $-\Delta$ rib cage volume 46.5 cc
- $-\Delta$ diaphragm volume 25.7 cc

Convex side

- $-\Delta$ rib cage volume 40.5 cc
- $-\Delta$ diaphragm volume 27.4


Preop QdMRI (5 pts)

Concave side

- $-\Delta$ rib cage volume 46.5 cc
- $-\Delta$ diaphragm volume 25.7 cc

• Convex side

- $-\Delta$ rib cage volume 40.5 cc
- $-\Delta$ diaphragm volume 27.4 cc

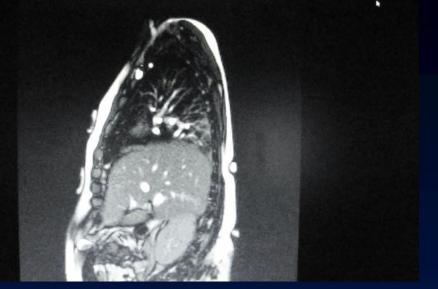
Preop QdMRI Concave Hemi-thorax Diaphragm volumes

• 2 pts

 $-\operatorname{concave} \Delta \operatorname{diaphragm} \operatorname{volume} < \operatorname{convex}$

• 1 pt

 $-\operatorname{concave} > \operatorname{convex}$


2 pts
– had equal volumes.



Concave Diaphragm 39.2 cc

Convex Diaphragm 20.1 cc

Pre-op Renal Excursion

Kidney excursion

- Concave was 2.58 mm
- Convex 3.02 mm.

What is normal

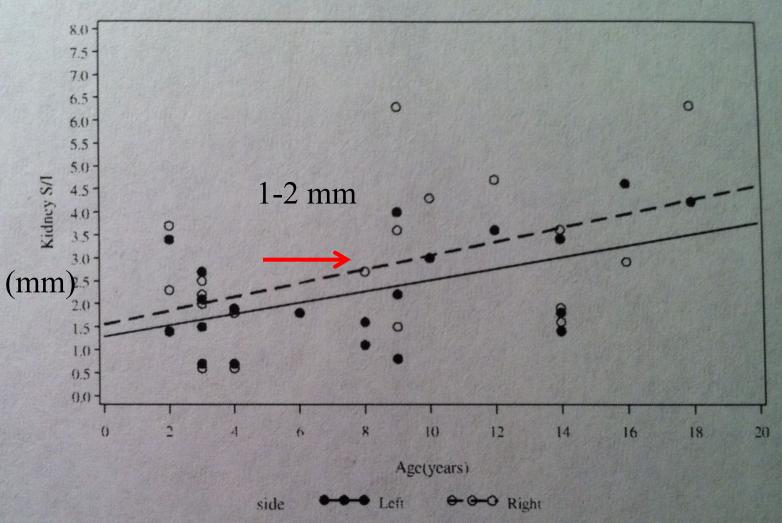
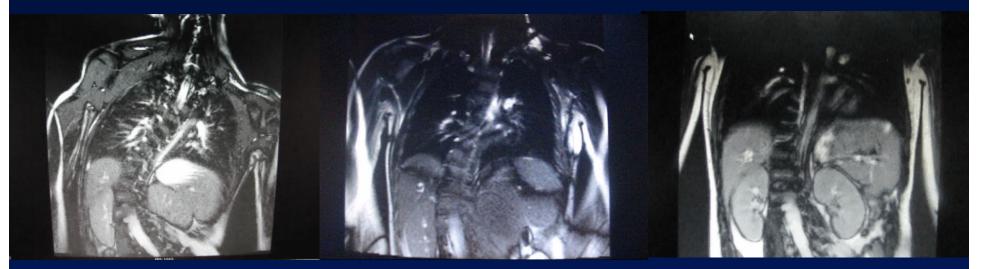
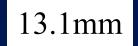



Fig. 1. Left and right kidney motion superoinferior (S/I) by age.



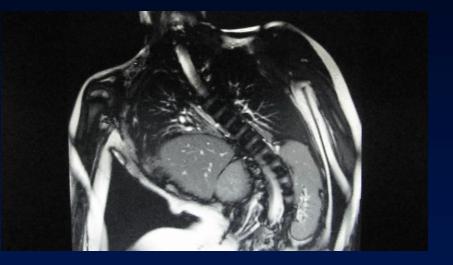
Post op Renal Excursion

- Concave kidney excursion increased
 6.3mm (320%)
- Convex 5.2mm (192%).

3 pts postop QdMRI scans

Concave side

- Δ rib cage volume increased 57%
- ∆ diaphragm volume increased 128%


Convex side

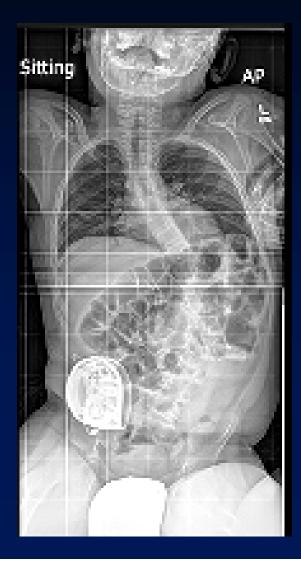
- Δ rib cage volume increased 72%
- ∆ diaphragm volume increased 109 %
 CTIS ()H

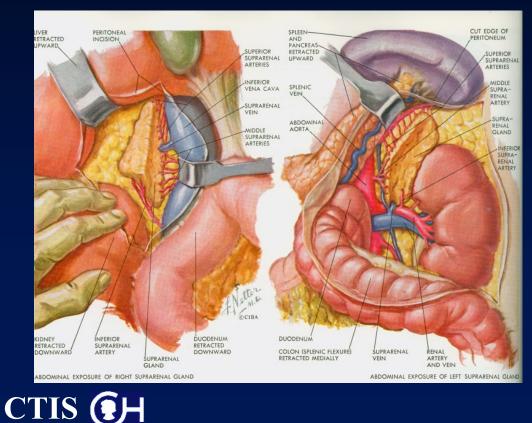
Summary

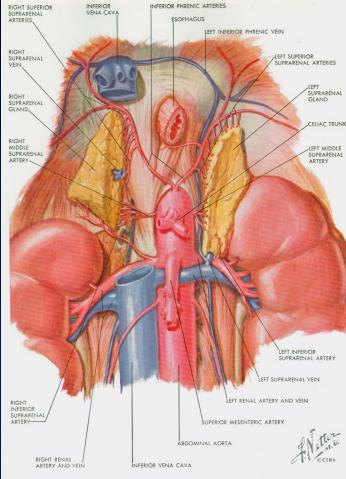
- QdMRI can accurately assess thoracic performance parameters such as unilateral diaphragm/rib cage lung volume changes
- It has great potential to increase our understanding of these diseases

Summary

- VEPTR treatment appears to increase concave hemidiaphragm and convex rib hump hemi-thorax performance in TIS due to neuromuscular scoliosis
 - But, this needs much more study




The Future Breakthroughs in Treatment


- To really advance surgical treatment of spine deformity in children, we have to better understand the dynamic biomechanical component of these diseases
 - X rays can't help us much
- We have the technology to do this
 - But we have a long way to go

The Kidney Pedicle and other structures probably play a complicated role in the pathologic biomechanics of TIS

Thank You

