Cervicothoracic Congenital Scoliosis: Treatment of shoulder balance and head tilt

David L. Skaggs, MD, MMM Professor and Chief of Orthopaedic Surgery University of Southern California Children's Hospital Los Angeles Endowed Chair of Pediatric Spinal Deformity

Visible Deformity - Head Tilt

Step 1: Is it progressive??? Ask for CXRs from birth

2 mo

3 yrs

Step 2: Set Parental Expectations

 Head Tilt and Shoulder Balance likely to improve, but will never be perfect.

Step 2: Set Parental Expectations

Evaluation of shoulder balance in the normal adolescent population and its correlation with radiological parameters

Ibrahim Akel · Murat Pekmezci · Mutlu Hayran · Yasemin Genc · Ozgur Kocak · Orhan Derman · Ilkay Erdoğan · Muharrem Yazici

Euro Spine J, 2008

- Mean shoulder height difference $8mm \pm 6mm$
- 28% have >10mm shoulder height difference (and self report level shoulders)
- T1 tilt poorly correlated with shoulder balance

Step 3: Surgical Techniques Congenital Cervicothoracic Scoliosis

- 1. Fusion
- 2. Resection
- 3. Distraction over time

No role for Bracing

Option #1 Hemi-epiphysiodesis (Fusion)

- <5yrs
- <50 deg curve</p>
- Posterior fusion alone
- Fuse 1/3-1/2 vertebrae
- Cant get correction from cast

Winter

3 month old Fused St. Elsewhere

1 year after in-situ fusion Progressive deformity

In situ fusion alone questionable

- Variable results
- Crankshaft
- Progressive
- Implants help?

2 yo congenital scoliosis Hemi Vertebrae Opposite Bar

2 yo congenital scoliosis Hemi Vertebrae Opposite Bar

Implants allow Some compression (correction) Pedicle screws *may* help control anterior

CHILDREN'S ORTHOPAEDIC CENTER

Use Downsized Implants 2 year old - 4.5 mm system

RD: 119

Tilt: 0

mA: 100 KVp: 120

C Acq no: 1

W:

Compresse Page: 74 of 115

Supra laminar C7

Transverse process T2

:D: 119 Tilt: 0 nA: 100 (Vp: 120 scq no: 1

Z: 2.31 C: 400 W: 2000 Compressed 8 :1 IM: 74 SE: 102

If Pedicle Screws to Long Cut them Shorter

Option #2 Resection and Fusion 7yo 40°

Anterior Exposure of the Cervicothoracic Spine using a Combined Cervical and Thoracic Approach

BY LYLE J. MICHELI, M.D.*, AND ROGER W. HOOD, M.D.*, BOSTON, MASSACHUSETTS

From the Department of Orthopaedic Surgery, Children's Hospital Medical Center, Boston

Sternal Split

I Prefer All Posterior Resection

Pre-Op Hemivertebrae 40°

1.75 unilateral vertebral resection

Hooks on ribs help close wedge Difficult if lordosis

If can fix in one surgery safely - first choice

Challenges: Strong Enough Bone for Anchors Protect with Halo

Halo Vest Useful

Iniversity of

Option #3 Distraction Over Time "Last" option

Brachial Plexus Palsy Injuries

- First rib adjacent to brachial plexus
- Avoid Solitary First Rib
- Monitor:
 - Pulse
 - SSEP, MEP

CHILDREN

First Rib Stout - OK to distract against

Midline Incision -Plan for final fusion

dis

- No Dissection of Proximal Spine
- Split muscles just lateral to TP

Adjacent to TP

Current Preference: Hemiepiphsiodesis + Distraction over time

Stop Bad Growth Encourage Good Growth

Congenital Cervicothoracic Scoliosis Treated wit Hemiepiphysiodesis and Placement of Distraction-Based Instrumentation

JBJS, 2013

A Case Report

Lindsay Andras, MD, Rachel Tobin, and David L. Skaggs, MD

Investigation performed at Children's Orthopaedic Center, Children's Hospital Los Angeles, Los Angeles, California

Hemiepiphsiodesis + Distraction over time

Distract every 1-2 years

No thorocotomy!

USC University of Southern California

Complications of Distracting on Ribs

Lengthening complication

• Monitoring normal intra-op

Arm pain post op when arm at side

Monitoring normal intra-op

Return to OR in Few Days

MEPs Normal

MEPs 50% Diminished

Lesson: Position arms at side when distracting on top rib

Complication: Rib Mass Avulsion

Rib Avulsion: Treatment

- Step 1
 - Remove Devices
 - Fuse Avulsed ribs to spine

Rib Avulsion: Treatment

- Step 1
 - Remove Devices
 - Fuse Avulsed ribs to spine
- Step 2 (4-6 months)
 - Replace Device
 - Modest Distraction

Pre-OP

Post-op

Complications: Implants Migrate Through Ribs Treatment: Put them back!

Migrations inherent in non-constrained, growing systems

Conclusions

- Simple fusion
 - Deformity acceptable
 - ≤ 4 ? vertebrae with implants
 - Risk averse
- Excision
 - Deformity concerning
 - Well defined hemi-vertebrae
 - ≤ 2 ? vertebrae
- Fusion + Distraction
 - Muliple levels involved
 - Risk of Thoracic Insufficiency Syndrome
 - Multiple operations acceptable
 - Solid upper anchors

USC University of Southern California

Conclusions

- Simple fusion
 - Deformity acceptable
 - ≤ 4 ? vertebrae with implants
 - Risk averse
- Excision
 - Deformity concerning
 - Well defined hemi-vertebrae
 - ≤ 2 ? vertebrae
- Fusion + distraction
 - Muliple levels involved
 - Risk of Thoracic Insufficiency Syndrome
 - Multiple operations acceptable
 - Solid upper anchors

Conclusions

- Simple fusion
 - Deformity acceptable
 - <u><</u> 4? vertebrae with i
 - Risk averse
- Excision
 - Deformity concerning
 - Well defined hemi-ver
 - ≤ 2 ? vertebrae
- Fusion + Distraction
 - Deformity Not Acceptable
 - Muliple levels involved
 - Multiple operations acceptable
 - Solid upper anchors

No thorocotomy!

USC University of Southern California

Adjacent to TP

Extra-Periosteal Want ribs to hypertrophy NOT in chest No chest tube

No Advantage to "Claw" (my opinion)

Congenital Scoliosis with Right Side T2 Hemivertebrae

By age 4 the Cervical curve progressed to 45°

Intra op Halo was placed to slowly bring her head tilt to neutral 2 weeks prior to instrumentation and fusion

 \bigtriangledown

Option #1 Hemiepiphysiodesis (Fusion in situ)

Option #2 Resection and Fusion

Option #3 Distraction Over Time

3 yo - progressive deformity

Step 1 - concave distraction

Step 1 - concave distraction

Step 2 - convex hemi-epiphysiodesis

Spine Entire AP/Lateral 8/9/2005 13:47:18 E-01098715 Z: 1.54 C: 173 W: 248 Page: 6 of 12 IM: 6 Children's Hospital Los Angeles USC University of Southern California CHILDREN'S ORTHOPAEDIC CENTER

CHILDRENS HOSP L.A.

Step 3- Intra-operative Distraction Over Time

M Page: 5 of 12

Midline Incision - no thorocotomy

The Effect of Early Thoracic Fusion on Pulmonary Function

Lori Karol, M.D., Charles Johnston, M.D., Kiril Mladenov, M.D., Peter Schochet, M.D., and Patricia Walters, RRT-NPS. Texas Scottish Rite Hospital for Children Dallas Texas

RESULTS

- 28 patients spinal fusions
- Age at surgery = 3 yrs (4 mos 8 yrs)
- Ave f/u 11 years (6 20 yrs)
- 27/28 had anterior surgery

FVC VS. PROXIMAL LEVEL OF FUSION

Cephlad Extent of Fusion More Important than # segments Fused

• FVC < 50%

- 67% (8/12) top of fusion T1 or T2
- 25% (4/16) top of fusion T3-T9
- P=0.0004

Dimeglio - Rabbit Model

- Posteior spine fusion in rabbits
- T1-T6 fusion decreases thoracic volume > T7-T12 fusion
- hypothesis

T1-T6 ribs articulate with the sternumT7-T12 ribs do not

Current Technique:

Congenital Cervicothoracic Scoliosis Treated with Hemiepiphysiodesis and Placement of Distraction-Based Instrumentation

A Case Report

Lindsay Andras, MD, Rachel Tobin, and David L. Skaggs, MD

Investigation performed at Children's Orthopaedic Center, Children's Hospital Los Angeles, Los Angeles, California

USC University of Southern California

CHILDREN'S DRTHOPAEDIC CENTER
Lengthenings opportunity for complications MCGRs may change complication rate

Children's Hospital

CHILDREN'S ORTHOPAEDIC CENTER

Southern California

