# EOS Treatment Outcomes Are We "Helping?" What Do We Know?

Charles E. Johnston MD



#### EOS Treatment Goals

- Control/correct deformity while permitting.....
- Elongation of spine
- · Increase thoracic volume
- → Satisfactory pulmonary function @ maturity
- QOL improvement occurs simultaneously?



Size matters?

## The basics - Fusion prior age 4-5

Goldberg ('03) -

"....early surgery, even with anterior growth arrest...did not halt the deformation of scoliosis and did not reliably preserve respiratory function in this group whose scoliosis presented before age 4."

- Emans ('04)
- Karol ('08)
- Vitale ('08)
- Typical PFT's 20-50% pred.
   when tested 10 yr later



## Well established that thoracic fusion < age 5-8 is associated with TIS

```
Goldberg et al Spine 2003
11 patients < 8 yr (1.4-7.8)
PFT's @ 20.5 yr. (15-30)
FEV1 = 41% (14-72)
FVC = 41% (12-67)
```

If fusion delayed to age 10  $\rightarrow$  PFT's = 70% mean (45-100%)



TSRHC study (Karol et al, JBJS 6/08)

Fusion age 3.3 yr, f/u 11 yr

FVC 58% (27-99)

FEV1 55% (23-91)



### Goal of RX: T1-12 length > 18 cm



Karol L. A. et.al. J Bone Joint Surg 2008:90:1272-1281

## Objective Measures - Criteria to Justify Intervention The Latest

- Conventional Cobb measures
- Thoracic parameters / pelvic width
  - Length (affected directly by correction)
  - Width (correlation to CT volume)
  - Sagittal depth (?)
- CT volume (esp. serial studies)
- Respiratory parameters (RR, O<sub>2</sub> sat, bipap)
- PFT's > age 6 (too late to use as pre-op indication)
- BMI / weight gain
- Dynamic MRI coming soon [role of expansion diaphragm-plasty]

#### What we don't know.....

- Correlation between thoracic parameters (The spine length, rib length) and PFT unavailable [no correlation between Cobb improvement and PFT w/ CW devices] Mayer/Redding
- No PFT data for GR patients' outcomes
- Does thoracic expansion actually reverse alveolar hypoplasia? Snyder et al
- Effect of CW devices on circumferential thoracic volume after age 10 Dimeglio
- Severity index / classification @ onset

### GR Graduates - PFT Outcome

SRS 2015 eposter #42

- 8 patients: 3 IIS, 1 idiopathic-like,
   1 congenital, 1 n-m, 2 syndrome
- Main curve 90° (60-123)
- Age (preop) 73 mo (48-97)
   incl. preop non-op delay 44 mo (19-62) in 4 pt
- Most recent surgery @ 129 mo (121-157)
  - 4: definitive fusion, f/u 1-2.4 yr
  - 4: lengthening only, f/u 3-4 yr observation

- Total procedures (mean) = 8.3
   1 initial implant, 1 unplanned revision/I&D,
   6.2 planned lengthenings (3-9)
- 7 rod/anchor complications / 4 patients







## Results Xray

|                 | Age (mo)         | T1-12 (cm)              | Curve °       |
|-----------------|------------------|-------------------------|---------------|
| Preop           | 73<br>(48-97)    | 13.9<br>(9.9-17.7)      | 90 (60-123)   |
| Last<br>surgery | 129<br>(121-157) | 22.8<br>(18.6-29.5)     | 39            |
| Last f/u        | 168<br>(133-204) | <b>23.9</b> (20.3-29.6) | 46<br>(26-53) |
|                 |                  |                         |               |

## Results - PFT's

|                                | FEV <sub>1</sub> (L) | FEV <sub>1</sub><br>% pred | FVC (L)            | FVC<br>% pred       |
|--------------------------------|----------------------|----------------------------|--------------------|---------------------|
| PFT #1<br>6+9 yr<br>(4+10-8+7) | .69<br>(.37-1.2)     | 58<br>(26-96)              | .75<br>(.48-1.2)   | 59<br>(30-115)      |
| PFT f/u<br>14 yr<br>(11+6-17)  | 1.7<br>(1.07-2.44)   | <b>51.8</b> (36-62)        | 2.1<br>(1.34-2.99) | <b>57.5</b> (39-76) |

## Summary / 8 yrs treatment

- T1-12 length gain cm 13.9 -> 23.9\*\*
- Curve magnitude 90 -> 46°
- Complications n=7 (4 pt.)

\*\* 18 cm T1-12 length @ maturity = threshold to avoid risk of restrictive lung disease (Karol '08)

Normal T1-12 length age 10 = 22 cm (Dimeglio '01) (age where definitive fusion usually acceptable)

#### Conclusion - Outcome

In spite of what appears to be satisfactory thoracic length gain and curve correction over 8 years of treatment, with acceptable complication rate, pulmonary outcomes (as measured by % predicted volume) are modest at best

Pulmonary volume increase <u>not</u> keeping up with expected volume increase due to growth

Hyperplasia

&

Hypertrophy



Thoracic Volume

Birth 6.7% of final volume age 5 30% " age 10 50%

#### What we know....

 Natural hx large curves

Increased mortality (Pehrsson)

PFT's < 45% pred.
@ maturity



#### **OTHER FUNCTIONAL TESTING?**



- Growing rod treatment designed to delay spinal fusion so the thorax can continue to grow, potentially increasing lung volume
- Poor PFT values have been reported in EOS grads who have undergone growing rod treatment
  - ~ 50% pred FVC % and  $\overline{FEV_1}$ % (SRS 2015 eposter )
- Clinical impression: kids with EOS are limited, not as active as their peers

## Step Activity Monitoring to Assess Functional Outcomes in EOS "Graduates"

11 patients (3 more !!) with EOS
were invited to wear a Step Activity
Monitor (SAM) (StepWatch™, Modus, WA)

- Prospective IRB approved study

· Wear time a.m.- bedtime





#### **RESULTS** Demographics



|             | EOS<br>n=11 | Control<br>n=20 | p value |
|-------------|-------------|-----------------|---------|
| Age at test | 12.6        | 13.1            | 0.592   |
| Height      | 150         | 157             | 0.215   |
| Weight      | 38.8        | 52.2            | 0.090   |

|             | EOS Surgical      |                      | EOS PFT     |                    |                 |                      |                    |
|-------------|-------------------|----------------------|-------------|--------------------|-----------------|----------------------|--------------------|
|             | Last Sx<br>months | Definitive<br>Fusion | Observation | FVC <sub>abs</sub> | FVC %           | FEV <sub>1 abs</sub> | FEV <sub>1</sub> % |
| EOS<br>n=11 | 42.2<br>23.9-66.2 | 6/11                 | 4/11        | 1.2<br>(0.48-2.04) | 48.4<br>(23-80) | 1.2<br>(0.40-2.59)   | 50.5<br>(15-77)    |

## RESULTS Demographics

|             | EOS<br>n=11 | Control<br>n=20 | p value |
|-------------|-------------|-----------------|---------|
| Age at test | 12.6        | 13.1            | 0.592   |
| Height      | 150         | 157             | 0.215   |
| Weight      | 38.8        | 52.2            | 0.090   |

|             | EOS Surgical      |                      |             | EOS PFT                |              |                        |                    |
|-------------|-------------------|----------------------|-------------|------------------------|--------------|------------------------|--------------------|
|             | Last Sx<br>months | Definitive<br>Fusion | Observation | FVC abs                | FVC %        | FEV <sub>1 abs</sub>   | FEV <sub>1</sub> % |
| EOS<br>n=11 | 42.2<br>23.9-66.2 | 6/11                 | 4/11        | 1.2<br>(0.48-<br>2.04) | 48.4 (23-80) | 1.2<br>(0.40-<br>2.59) | 50.5               |

#### **RESULTS** Total Steps





- Total Steps were the same for EOS and Controls
  - Weekday and Weekend P = ns

#### **RESULTS** Total Active Time





- Total Active Time was the same for EOS and Controls
  - Weekday and Weekend P = ns

#### OUTCOME - CONCLUSION

- PFT's underwhelming result: ~50% pred value
  - No correlations were found to SAM data
- Step Activity data shows that patients with EOS take the same number of steps and spend the same amount of time in Activity during the week as their peers
- Despite pulmonary "limitations", daily activity measures suggest no significant limitation in activity or active time

## **Exercise Tolerance in Growing Rod**"Graduates" - New Respiratory Functional Outcome Measure





#### **EXERCISE EVALUATION**

- To evaluate exercise O<sub>2</sub> consumption during a graded exercise test
- Characterize respiratory capacity in EOS patients who are ≥1 year since last GR/definitive fusion surgery



#### METHODS: VO<sub>2</sub> CONSUMPTION TEST

- VO<sub>2</sub> collected breath by breath by gas exchange portable system
- Heart Rate monitor
- Variables
  - Ventilation:
    - Breaths/min (f)
    - Tidal volume (VT)
    - Ventilation (VE)
  - Cardiovascular:
    - HR, HR% percent of age predicted HR max
  - Metabolic :
    - VO<sub>2</sub> Rate (ml/kg/min)
    - VO<sub>2</sub> Cost (ml/kg/m)
    - respiratory exchange ratio (R) VCO<sub>2</sub>/VO<sub>2</sub>
    - VO<sub>2</sub> max predicted
  - Velocity (mph)



#### PATIENTS: EOS VS. CONTROL

|             | EOS  | Control | p value |
|-------------|------|---------|---------|
| N           | 11   | 20      |         |
| Age at test | 12.6 | 13.1    | 0.592   |
| Height      | 150  | 157     | 0.215   |
| Weight      | 38.8 | 52.2    | 0.090   |

|     | PFT                                                   |      |                   |                 |  |  |  |
|-----|-------------------------------------------------------|------|-------------------|-----------------|--|--|--|
|     | FVC abs FVC % FEV <sub>1 abs</sub> FEV <sub>1</sub> % |      |                   |                 |  |  |  |
| EOS | 1.2<br>(.48-2.04)                                     | 48.4 | 1.2<br>(.40-2.59) | 50.5<br>(15-77) |  |  |  |

#### **OVER-GROUND WALKING**

|         | VO <sub>2</sub> Rate<br>ml/kg/min | HR<br>bpm | VO <sub>2</sub> Cost | Velocity<br>mph |
|---------|-----------------------------------|-----------|----------------------|-----------------|
| EOS     | 21.0                              | 131       | 0.28                 | 2.8             |
| Control | 17.5                              | 117       | 0.22                 | 3.0             |
| p value | 0.107                             | 0.021     | <0.000               | 0.083           |

- At self-selected walking velocity
  - EOS group had a higher HR and increased
     VO<sub>2</sub> Cost
  - Velocity was not significantly different p>ns
    - Able to keep up with peers

#### END OF TEST (eg 85% HR<sub>Max</sub>)

- Compared to controls, the EOS grads take:
  - 36% higher resp rate
  - Achieving 50% the Volume at
  - 70% Ventilation rate







#### END OF TEST (eg 85% HR<sub>Max</sub>)

|         | VO <sub>2</sub> Rate | HR<br>bpm | % HR<br>max | Velocity<br>mph | <b>R*</b><br>vco,/vo, |
|---------|----------------------|-----------|-------------|-----------------|-----------------------|
| EOS     | 28.2                 | 164       | 79%         | 2.8             | 1.02                  |
| Control | 34.2                 | 174       | 84%         | 3.6             | 0.90                  |
| p value | 0.035                | 0.231     | 0.433       | 0.000           | 0.004                 |

- Heart rate is similar, but EOS group consumes less  $VO_2$  while walking at a **slower** velocity
- EOS group is working harder than controls(R = 1.02)
   \*R ≥ 1.1 anerobic metabolism (nearly at VO₂ max)

#### **+VE CONCLUSION**

- PFT suggests poor function ~50% pred
- VO<sub>2</sub> test demonstrates that GR graduates are able to keep up with their peers with typical everyday walking velocity
- They have the capacity to exercise but at a lower work load (slower speed) due to respiratory limitations

## EOS Outcome - +ve?

- PFT data uncertain, worrisome (test poor reliability)
- SAM, exercise tolerance tests encouraging -> keeping up
- QOL issues tbd (Vitale, Redding, Yazici)
- Can similar/better outcomes be obtained with less rx sessions?