The effect of surgical intervention for early onset scoliosis associated with neurofibromatosis comparison between early fusion and growing rod by a single surgeon

National Hospital Organization Kobe Medical Center

Teppei Suzuki, Koki Uno, Takuto Kurakawa

Disclosure

Author Teppei suzuki Koki Uno Takuto Kurakawa Relationships Disclosed No Relationship Surgical Spine (d) Depuy Spine(d) No Relationship

(a) Grants/Research Support
(b) Consultant
(c) Stock/Shareholder
(d) Speakers' Bureau
(e) Other Financial Support

Introduction

To evaluate the effect of growth-preserving spine surgery for early onset scoliosis (EOS) in NF-1, spinal fusion (Fusion Group; FG) and dual growing rod (Growing Rod Group; GRG) were examined and compared.

Material and Methods

Demographic Parameters

Except for lumbar curve, All patients applied to GR surgery.

Pt No	Surg.	Gender	Age at initial	Age at FFU	Location	Kyphosis>50	indication
1	FG	F	7	15	Single thoracic	Kyphosis	Severe Kyp
2	FG	М	7	19	Single thoracic	None	unapplicable
3	FG	F	10	24	Lumbar	None	Location
4	FG	F	7	12	Thoracolumbar	Kyphosis	Location
5	GRG	F	8	19	Single thoracic	None	
6	GRG	М	8	19	Double thoracic	None	
7	GRG	F	2	14	Single thoracic	None	
8	GRG	М	6	13	Double thoracic	None	
9	GRG	М	7	11	Double thoracic	Kyphosis	

	Dystrophic Features										
	Abubakar; Spi								<u>ine, 20</u>	000	
Dt		1 Dih	2 Transverse	3	4	5 (Dural	7 Para-	8 Short		
No	Surg.	penciling	process spindling	rotation	scalloping	wedging	ectasia	spinal tumors	segment curve	Total	
1	FG	1	1	1	1	1	1	1	1	8	
2	FG	1	1	1	1	1	1	1	1	8	
3	FG	0	1	1	1	1	1	1	1	7	
4	All	atients	were	classif	ied ¹ as	havin	a dvst	ronhic	c urve	8	
5	GRG	1	1	1	1	1				7	
6	GRG	1	1	1	1	1	1	1	1	8	
7	GRG	1	1	1	1	1	1	1	1	8	
8	GRG	1	1	1	1	1	1	1	1	8	
9	GRG	1	1	1	1	1	1	1	1	8	

Surgical Data

	/ 1 1		2	Ð	±:	11			
							Additional surg (augmentation)	Complication	Total No of surg.
	Ő.		A			H	Ant(2)+Post(4)	Myelopathy due to severe kyphosis PJK	7
			6 5			F-	Ant(1)	The mean no of total surg.	2
ľ				12		E A	Post(1)	in FG was ${f 4}_{\pm 2.6}$	2
4	FG	An	-		1-6	38)	Ant(1)+Post(2)	Dislocation due to intrathecal tumor and sacroiliac joint subluxation	4
5	GRG	GR	8	19	10	Done	None		12
6	GRG	GR	8	19	12	Done	None		14
7	GRG	GR	2	14	16	Done	Post(1)	Infection, PJK, malalignment, Resorption due to dystrophic	17
8	GRG	GR	6	13	10	None	None	The mean no of total surg.	11
9	GRG	GR	7	11	4	None	None	in GRG was 11 ±4.7	5

Main curve

Truncal height (T1-S1 length)

Case presentation no7 2y.o. Female

GRG (growing rod group)

Discussion

High risk of pseudoarthrosis

Winter; JBJS1979

<u>Sirois; JPediatrOrthop1990</u> Combined anterior and posterior fusion was recommended

Parisini; Spine1999

Early fusion does not lead to significant truncal height loss, if the curve is short. <u>Weinstein</u>

Weinstein; Spine1997

However in the case of double curve or severe kyphosis, it may be difficult to save the growth potential.

Discussion

15

There is very scant literature on fusionless treatment for NF 5NF/ 23cases of multicenter database Suken A; Spine2014 1NF/ 14cases of MCGR Akbarnia; Spine2013

2NF/ 23cases of single rod GR Grregi T; Stud Health Technol Inform. 2012

GR maintained the initial correction and allowed spinal growth.

The problem is not curve progression but resorption of the vertebral bodies at fusionless area.

> Augmented (anterior) fusion is recommended in case of these dystrophic changes

GRG (growing rod group)

Th5

Conclusion

- 1. Growing rod technique maintains correction achieved at initial surgery while allowing spinal growth to continue in the treatment of scoliosis in NF-1 patients.
- 2. Once progressive dystrophic change develop, augmented spinal fusion should be indicated even if during lengthening period.

References

- 1. Durrani AA1, Crawford AH, Chouhdry SN,et al Modulation of spinal deformities in patients with neurofibromatosis type 1.Spine2000 Jan;25(1):69-75.
- 2. Greggi T, Martikos K. Surgical treatment of early onset scoliosis in neurofibromatosis. Stud Health Technol Inform. 2012;176:330-3.
- Koptan W, ElMiligui Y.; Surgical correction of severe dystrophic neurofibromatosis scoliosis: an experience of 32 cases.Eur Spine J. 2010 Sep;19(9):1569-75.
- 4. Kim HW, Weinstein SL. The management of scoliosis in neurofibromatosis. Spine 1997 Dec 1;22(23):2770-6.
- 5. Lykissas MG, Schorry EK, Crawford AH, et.al.; Does the presence of dystrophic features in patients with type 1 neurofibromatosis and spinal deformities increase the risk of surgery? Spine2013 Aug 15;38(18):1595-601.
- 6. Shahcheraghi GH, Tavakoli AR.; Corpectomy and circumferential spinal fusion in dystrophic neurofibromatous curves. J Child Orthop. 2010 Jun;4(3):203-10.
- Shah SA, Karatas AF, Dhawale AA, et al The effect of serial growing rod lengthening on the sagittal profile and pelvic parameters in early-onset scoliosis.; Growing Spine Study Group.Spine Spine 2014 Oct 15;39(22):E1311-7.
- 8. Ramachandran M, Tsirikos AI, Lee J, et. al.; Whole-spine magnetic resonance imaging in patients with neurofibromatosis type 1 and spinal deformity.J Spinal Disord Tech. 2004 Dec; 17(6):483-91.
- 9. Sirois JL 3rd, Drennan JC.; Dystrophic spinal deformity in neurofibromatosis.J Pediatr Orthop. 1990 Jul-Aug;10(4):522-6.