Proximal Rib versus Proximal Spine Anchors In Growing Rods: Updated Results from a Collaboration between Two National Databases

Michael G. Vitale,

Hiroko Matsumoto, Mark P. Sullivan, Evan P. Trupia, Julie Yoshimachi, Diana K. Lee, Sumeet Garg, John Flynn, Peter
F. Sturm, Paul Sponseller, Francisco Sanchez Perez-Grueso, David P. Roye Jr, David L Skaggs, and the Children's Spine Study Group and the Growing Spine Study Group

Michael G. Vitale, MD MPH

Disclosure: I DO have a financial relationship with a commercial interest. *Royalties:* Biomet *Consultant:* Stryker, Biomet *Research Support:* CWSDRF, SRS, POSNA; OREF *Travel Support:* CWSDSG, FoxPSDSG *Other:* CSSG - BOD POSNA – BOD IPOS- Chairman

> Some Relevant Supported by an SRS Grant

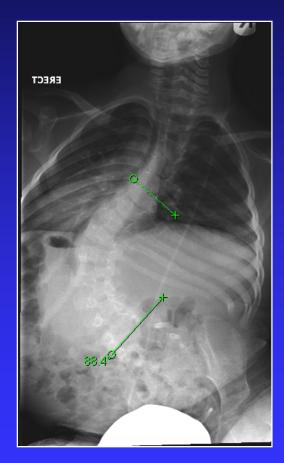
Prospective Study

To compare outcomes of RIB versus SPINE based <u>Proximal</u> <u>Anchors in growing</u> instrumentation surgery.

Methods

Design:

Prospective, multi-center study of growing instrumentation surgery


Participants:

•Inclusion:

- Early Onset Scoliosis (EOS)
- 3.0 9.9 years of age
- Cobb > 40°
- Dual Rods
- Exclusion:
 - Prior spine surgery
 - Guided-growth constructs, Magnetically Controlled Growing Rods (MCGR)

Outcomes:

- Cobb correction (6 mo post-op):
- Complications over time
- EOSQ

Enrollment Targets

The study initially aimed to include 70 patients

- 35 Rib-based proximal anchor patients
- 35 Spine-based proximal anchor patients

Enrollment has now reached 106 patients

- 73 Rib-based patients
- 33 Spine-based patients

Patient Characteristics

Total (n) = 106	Rib Anchors	Spine Anchors	P-value
Subjects (n)	73	33	
Age (yo)	6.45 ± 2.0	6.21 ± 2.05	0.619
Gender	39% male	36% male	0.775
Weight (kg)	21.79 ± 7.45	31.25 ± 9.69	0.397
Height (cm)	112.85 ± 17.13	$141.00 \pm NA$	
Sitting Height (cm)	62.42 ± 12.34	$103.75 \pm NA$	
Arm Span (cm)	114.87 ± 28.16	$142.00 \pm \mathrm{NA}$	
Kyphosis (deg)	53.94 ± 20.21	44.22 ± 23.13	0.047
Cobb (deg)	70.92 ± 17.18	73.52 ± 17.51	0.475
Follow up (years)	1.025 ± 0.46	1.46 ± 0.63	<0.01

Some Differences in C-EOS

Total (n) = 106	Rib Anchors	Spine Anchors
Etiology (106)	73 patients	33 patients
Congenital (C)	17.81% (13)	3.03% (1)
Neuromuscular (M)	49.32% (36)	24.24% (8)
Syndromic (S)	15.01% (11)	51.51% (17)
Idiopathic (I)	18.81% (13)	21.21% (7)
C-EOS Cobb (105)	72 patients	33 patients
2: 20-50 (deg)	12.5% (9)	6.06% (2)
3: >50 – 90 (deg)	72.2% (52)	81.81% (27)
4: > 90 (deg)	15.28% (11)	12.12% (4)
Kyphosis (92)	65 patients	27 patients
(-): < 20 deg	4.61% (3)	18.52% (5)
N: 20 – 50 deg	41.54% (27)	44.44% (12)
(+): > 50 deg	53.85% (35)	37.04% (10)

Overall, no significant difference in Cobb angle correction between patients who received rib vs spine anchors

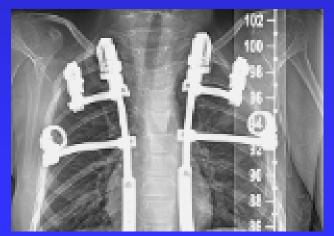
	Rib	Spine	P-value
Subjects (97)	70	27	
Pre-Op Cobb	70.92 ± 17.18	73.52 ± 17.51	0.508
6 mo Cobb Correction (%)	28.73 ± 22.55	35.9 ± 24.7	0.175

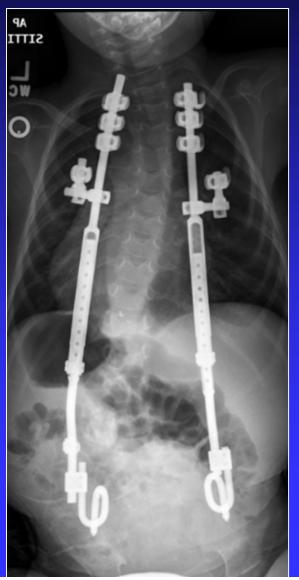
No significant difference in the QoL EOSQ scores between patients who received rib or spine anchors

Total (n) = 35	Rib	Spine	P-value
Subjects (35)	32	3	
Pre-Op EOSQ QoL Domain	69.78 ± 20.32	80.25 ± 11.84	0.390
6 mo Score Change (%)	4.75 ± 21.94	-6.55 ± 37.43	0.425

Hardware Migration at 2 years


- 8/73 (11%) in rib based group
- 2/33 (6%) in spine based group




Apples and Oranges Quantifying Rib Fixation

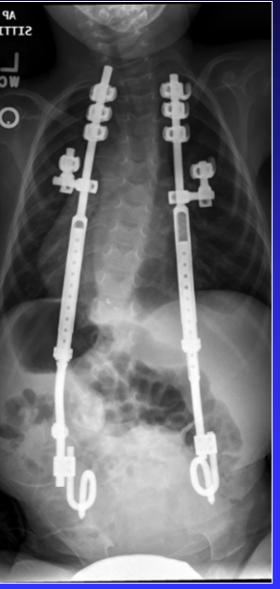
Number of Proximal Anchors

Only 1 patient with 5 or more proximal anchors experienced migration

	Rib Anchors			Spine Anchors						
	Total	≤2	3-4	< 5	≥ 5	Total	≤2	3-4	< 5	≥ 5
Total N	73	32	21	53	20	33	0	23	23	10
Device Migration	8 (11%)	4 (12.5%)	3 (14.3%)	7 (13%)	1 (5%)	2 (6%)	0	2 (8.7%)	2 (9%)	0

More proximal Anchors in Spine Group

Total (n) = 106	Rib Anchors	Spine Anchors	P-value	
Subjects (n)	73	33		
Proximal Anchors	3.21 ± 1.60	4.67 ± 1.16	<0.01	
Instrumentation Type	<u>63 VEPTR</u> 10 GR	2 VEPTR 31 GR		


Growing Rod to Growing Rod Comparison

Total (n) = 41	GR to Rib	GR to Spine	P-value
Subjects (n)	10	31	
Proximal Anchors	6.7 ± 1.34	4.71 ± 1.19	<0.01
Cobb Correction	55.57 ± 12.74	35.09 ± 25.32	0.002
Device Migration	0/10 (0%)	2/31 (6.5%)	0.412
Pre-Op EOSQ QoL Domain	67.9 ± 22.3	77.2 ± 19.0	0.204
6 mo Score Change (%)	3.38 ± 34.63	-18.4 ± 40.02	0.13

Rib/VEPTR vs Rib TGR Comparison

	VEPTR to Rib	GR to Rib	P-Value
Subjects (n)	63	10	
Proximal Anchors	3.1 ± 1.5	6.7 ± 1.3	<0.001
Cobb Correction	24.2 ± 20.5	55.5 ± 12.7	<0.001
Device Migration	8/63 (13%)	0/10 (0%)	0.234

The more proximal anchors, the greater Cobb correction and less device migration

Conclusions

- At first glance,
- No difference in curve correction, change in EOSQ-24 score between rib-based and spine-based patients
- Higher rates of proximal migration in rib based group but,

Conclusions: GR to GR

- Excluding VEPTR...
- Comparing rib based GR vs spine based GR, rib based GR have more anchors, better curve correction and no migration
- Having 5 or more proximal anchors was protective against proximal device migration

Next Steps?

• Continue enrollment in order to stratify for proximal implant number

• Incorporate MAGEC

• Longer term f/u

Thank You Michael G. Vitale, MD MPH

mgv1@columbia.edu

