

VEPTR

Are we reducing respiratory assistance requirements at two years?

Sarah Nossov, MD . Robert M. Campbell MD . Oscar H. Mayer, MD John T. Smith, MD . Sumeet Garg, MD . John M. Flynn, MD Patrick J. Cahill . Children's Spine Study Group

Authors Disclosure

- **S. Nossov**: None.
- R.M. Campbell: None.
- O.H. Mayer: None.
- J.T. Smith: Biomet, Children's Spine Foundation, Globus Medical, Spineguard, Depuy, A Johnson & Johnson Company.
- S. Garg: Medtronic.
- J.M. Flynn: Biomet, Wolters Kluwer Health Lippincott Williams & Wilkins.
- P.J. Cahill: DePuy, Ellipse Technologies, Medtronic.
- C. Study Group: Children's Spine Foundation, DePuy Synthes.

VEPTR for TIS and pulmonary status

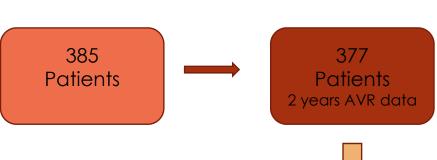
- Goals of treatment: improve QOL by improve clinical pulmonary status and halt curve progression.
- Are we reducing respiratory assistance requirements for kids with EOS and TIS at two years after VEPTR treatment?

	Assisted Ventilation Rating (AVR)
0	No assistance, on room air
1	Supplemental oxygen required
2	Night-time only ventilator/cPAP support
3	Part-time ventilator/cPAP support
4	Full-time ventilator support

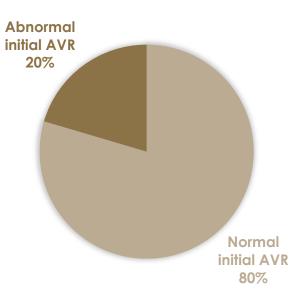
Multicenter Registry

Database query

385
Patients

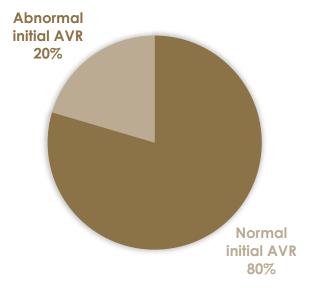

Patients
2 years AVR data

- Initial VEPTR at age under 10 years old for treatment of TIS
- 2 years of follow-up
- AVR data available

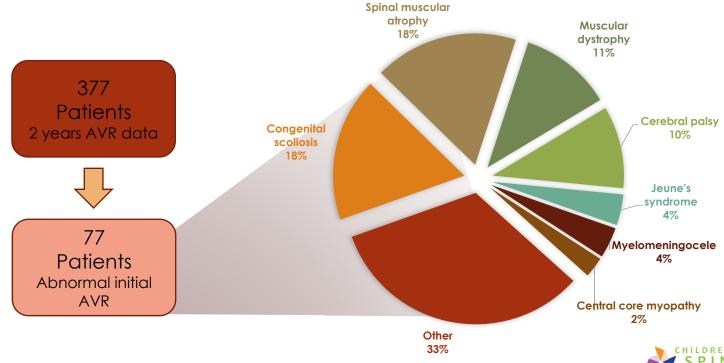


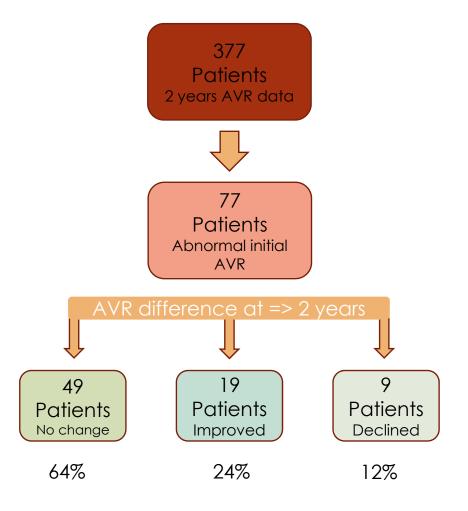
Finding abnormal AVR

77
Patients
Abnormal initial
AVR

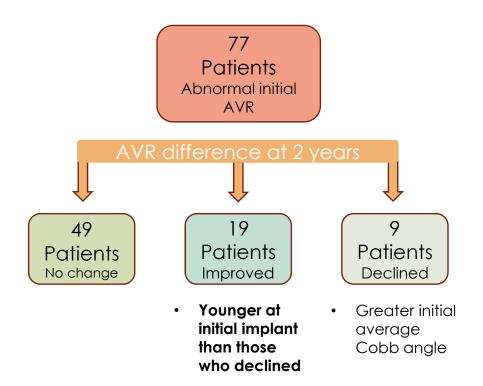


Sidebar: Normal AVR

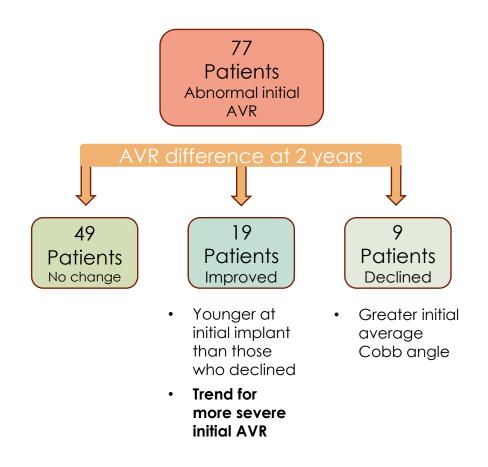

- < 10 at initial VEPTR & AVR = 0 (on room air)
- 300 patients
 - 98 congenital with fused ribs
 - 54 Idiopathic juvenile/infantile
 - 31 congenital without fused ribs
 - 20 myelomeningocele
- 281 remained stable at room air (all but one idiopathic)
- 19 worsened (6.3%)
 - CP (4), SMA (3), Congenital with fused ribs (3)


Finding abnormal AVR

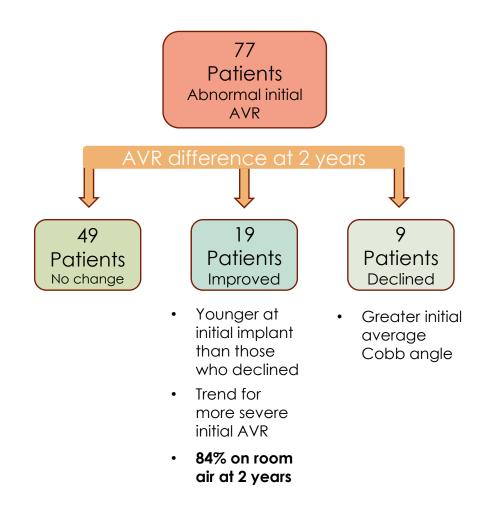
Improvement defined as a decrease in AVR of one level. Note that an AVR of 0 (room air) does not exclude TIS.



Initial average Cobb angle in those with improvement (58.4°) and those with no change (63.5°) was less than in those with deterioration (85.5°) (p=0.014).



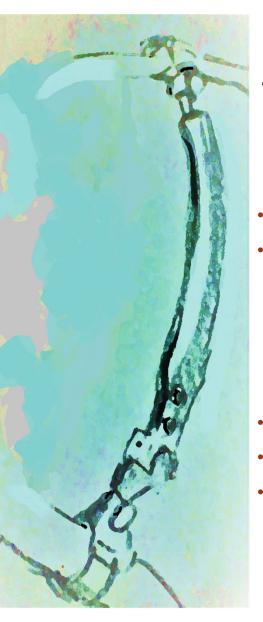
The average age in years at implant of those with improvement (3.3 years) was less than those with negative (6.1 years) [p<0.01] and no change (4.8 years).



The positive change group had 25% of the most severe initial AVR score (4 – full time ventilation) compared to negative change group (0%) and no change group (20.4%).

16 of the positive changes (84.2%) then resulted in a normal AVR at last follow-up and 3 on part time ventilation support.

VEPTR for TIS and pulmonary status


 Are we reducing respiratory assistance requirements for kids with EOS and TIS at two years after VEPTR treatment?

YES

At two years post-op, patients with EOS & TIS with initial VEPTR before age 10:

- 88% had stable or improved AVR
- 24% or roughly 1:4 had improved AVR
- The majority of those who improved (83%) demonstrate a resolution of pulmonary support.

Thank you

- ICEOS
- CSSG and co-authors
 - Robert M. Campbell, MD;
 Oscar H. Mayer, MD;
 John T. Smith, MD;
 Sumeet Garg;
 John M. Flynn, MD;
 Patrick J. Cahill
- Michelle Ho, Anthony Capraro
- Ben Fox fellows: Chris Brusalis & Christian Refakis
- Keith Baldwin, MD

