

10th Int. Congress on Early Onset Scoliosis Utrecht 2016 Long-term consequences of rib distraction: Solving one problem and creating another one

Carol Hasler Basel/Switzerland

VEPTR Vertical Expandable Prosthetic Titanium Rib

Thoracic Volume-Depletion Deformities Campbell JBJS-Am 07

- I absent ribs
- II fused ribs

Illa foreshortened thorax e.g. Jarcho-Levine

IVb transverse contriction e.g. Jeune Syndrome

Potential advantages

No fixation on the spine, minimized neuro risk Polyaxial anchors, Anchor points intact for definitive fusion

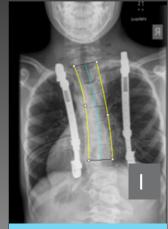
Avoids spontaneous fusion, preserves spine flexibility, Enlarges/stabilizes chest cage, promotes lung growth&function True deformity correction by growth modulation

Growth Spine flexibility Chest cage

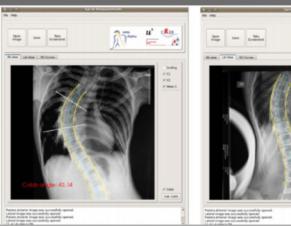
VEPTR promotes growth

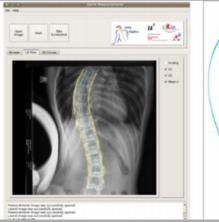
Hell-Vocke A. J Bone Jt Surg 85-A 2003 Murphy RS et al. JPO 2016

@implantation



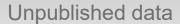
4y f/up



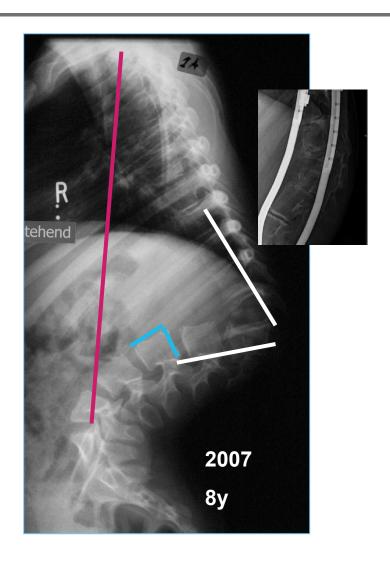


 $I_2/N_2=V_2$

Comparison of instrumented I vs uninstrumented section N before (V₄) and 4 years after (V₂) the index procedure

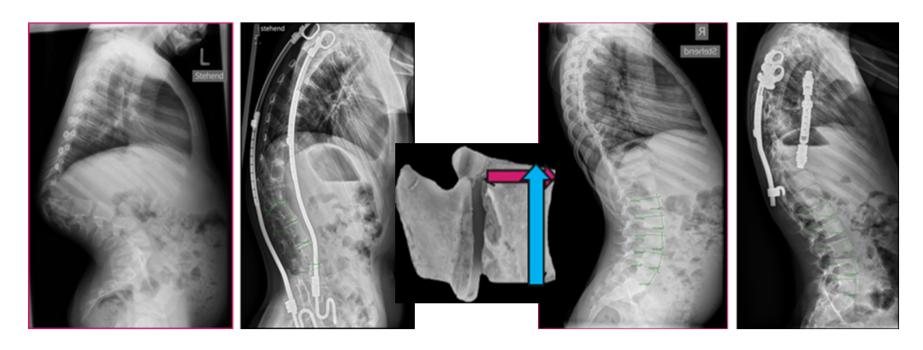


Berger S, Hasler C et al


A software program to measure the three-dimensional length of the spine

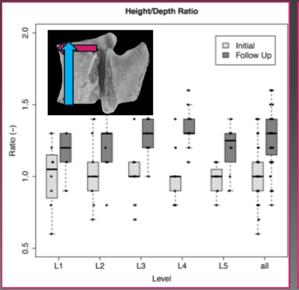
Computer Methods and Programs in Biomedicine 2017, 138:57-64

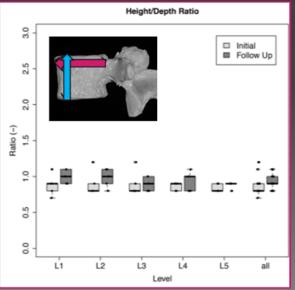
Vertebral body growth

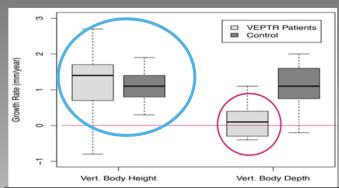


Hasler C et al J Child Orthop 2015 Aug;9(4):287-93

Metamorphosis of human lumbar vertebrae induced by VEPTR growth modulation and stress shielding




Group 1 Controls


VEPTR

Controls

Hasler et al 2010 Spine

Distraction & Stress shielding Wertebral Body Metamorphosis

Sotos Syndrom cerebral giantism – 13y, f, 6 year VEPTR Universitäts

Kyphoscoliosis

Ossification along the implant

Spontaneous rib fusions

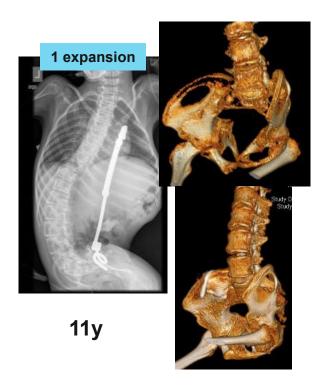
Autofusion T5- L3

Uncontrolled rotation (70°)

Severe osteoporosis

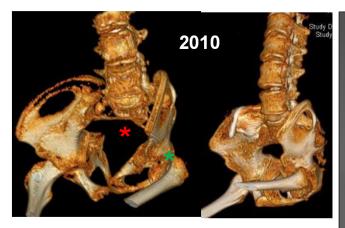
2006, 7y, f pre VEPTR

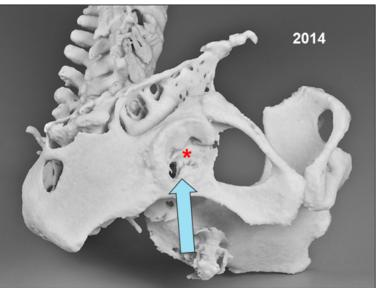
2008, 9y, f post VEPTR 5 expansions

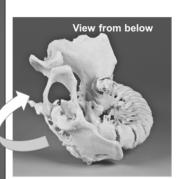


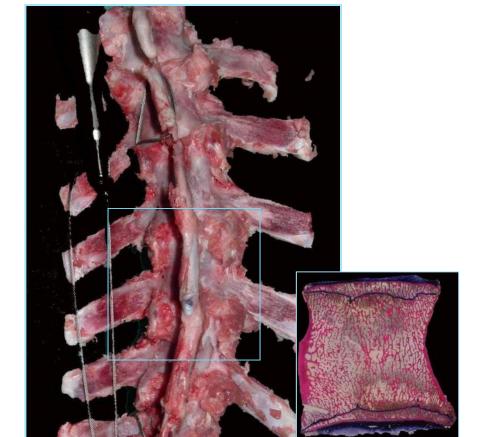
2012 @ the time of final instrumentation

Crankshaft




9y, f, Arthrogryposis

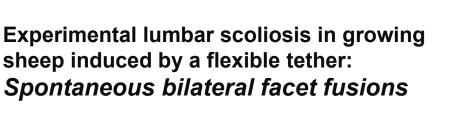



Effects of immobilization

- Kahanovitz N et al. CORR <u>1984.</u> The effect of internal fixation without arthrodesis on human facet joint cartilage / Gardner VO&Armstrong GW 1990 Long-term lumbar facet joint changes in spinal fracture patients treated w/ Harrington rods 6-26mths and 6-12y fixation for TL-#'s. degen.
- Kahanovitz N et al. Spine <u>1976.</u> The effects of internal fixation on the articular cartilage of unfused canine facet joint cartilage 2-6mths Harrington rods: facet degen., persisting degen. after metal r/o
- Igbal K et al. Indian J Orthop <u>2012</u> Effects of immobilization on thickness of superficial zone of articular cartilage of patellae in rats 4/52 POP knee
- Sakamoto J et al. Conncet tissue res <u>2009</u> Immobilization-induced cartilage degeneration 4/52 POP vs CPM @ ankle
- MacLean JJ et al. Spine <u>2003</u> Effects of immobilization and dynamic compression on intervertebral disc gene expression in vivo Ilizarov on rat tails; 72hrs immobilization vs dynamic compression and coupled effect immobil. Followe by compr. Alteration of gene expression (down- & upregulation) in discs

Sawyer JR et al PSF vs observation in patients who have undergone distraction-based treatment for EOS. Spine Deformity 2016 (Nov) **PSF did not provide significant curve correction**

Lattig F et al Treatment of EOS deformity with VEPTR: a challenge for the final spondylodesis.


Clin Spine Surg 2016 Autofusion

Heterotopic Ossifications

¹Multicenter radiographic study Basel, Hamburg, Tel Aviv, Oslo N=66 with 4y f/up

Zivkovic V, Büchler P, Ovadia D, Riise R, Stücker R, Hasler C. Extraspinal ossifications after implantation of VEPTR J Child Orthop 2014

Groenefeld B, Hell AK.

Ossifications after VEPTR rib treatment in children with TIS and scoliosis Spine 2013

27/66 (41%), most around VEPTR implant¹

Periprosthetic bone

Scarring

Spontaneous fusions

Effect on chest cage compliance and pulmonary fct?

Dede O. J Bone Joint Surg 2014 N=21 TIS/VEPTR patients 6y f/up

Decrease of predicted FCV and increase of chest wall stiffness

Conclusions

Vertebral morphology Immobilisation

Periosteal growth Enchondral ossification

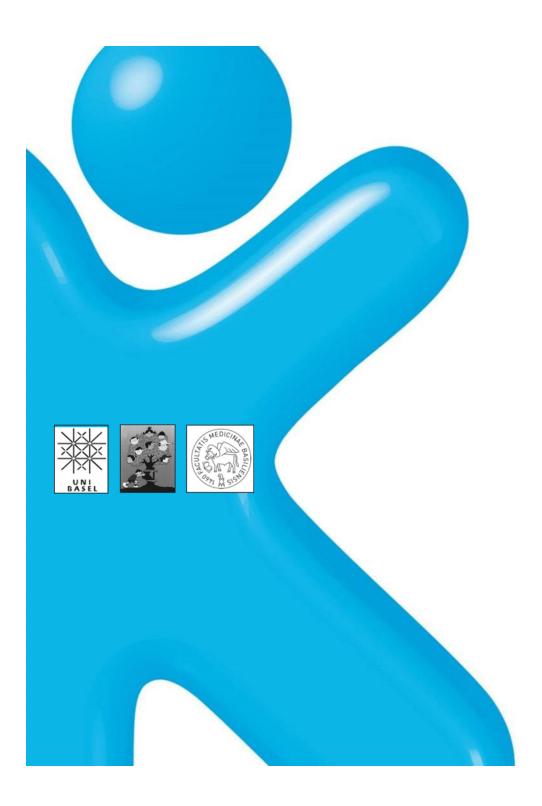
Facet & disc degeneration, spontaneous fusion

Crankshaft
Ossifications
Impact on the chest wall ?

Multiple malformations

Normally segmented spine Harnessed spine and thorax

VEPTR Vertical Expandable Prosthetic Titanium Rib


Thoracic Volume-Depletion Deformities Campbell JBJS-Am 07

- I absent ribs
- Il fused ribs

Illa foreshortened thorax e.g. Jarcho-Levine

IVb transverse contriction e.g. Jeune Syndrome

