Hemoglobin Levels Pre- and Post-Treatment as a Surrogate for Disease Severity in Early Onset Scoliosis

Michael Glotzbecker MD, Alexandra Grzywna BA, Patricia Miller MS, Michael Vitale MD MPH, Josh Pahys MD, Jeffery Sawyer MD, Patrick Cahill MD, John Emans MD

Disclosures

None related to this presentation

Background

PFTs difficult in EOS

EOS outcome measures not clear

Search for surrogates
-Spine length, lung volume, etc.

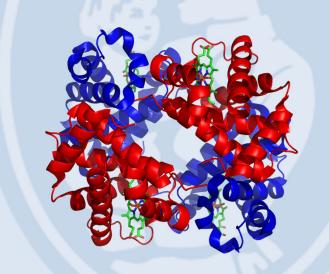
Background

Emans et al 2009:

Retrospective review EOS

- -23% prevalence elevated Hgb
- -Significant treatment effect w/ rib based growing construct (n=85)
- -No treatment effect for GR patients (n=53)

Skaggs 2015:


Retrospective review GR patients (n=66)

- -8% elevated Hgb prevalence (z>2)
- -No significant effect with surgery

Study Question

Is Hgb:

- 1) A good marker of disease severity
- 2) Useful in assessing effect of treatment in EOS

Methods

Prospective cohort study

Inclusion:

- EOS planned treatment with distraction based construct
- Elevated Hgb (Z score > 1)

Exclusion:

- Previous surgery
- Underlying hematologic disorder

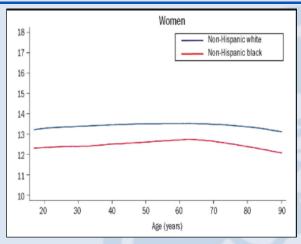
Data

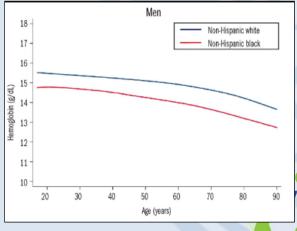
Time Points:

- Pre-implantation
- 6 months
- 1 year

Data Collected:

- Age, sex, BMI, diagnosis, comorbidities, surgical history, Cobb angle
- Use of pulmonary support (BiPAP or CPAP, 02)
- · CBC, BMP





Hemoglobin

Hgb varies by age

Z score provides standardization

Results

160 patients:

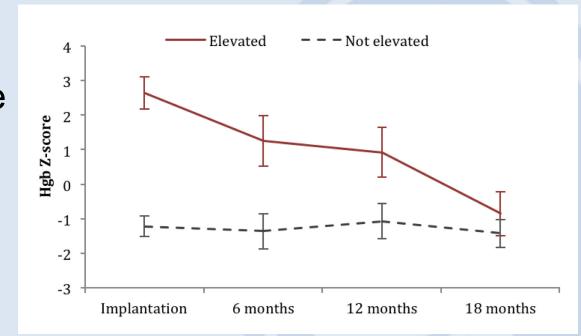
- -GR (12%)
- -MCGR (33%)
- -Rib based growing construct (54%)

Mean age: 6.7 yrs

Results

26/160 (16%) elevated Hgb

	Elevated	Not Elevated	
Age	4.3 +/- 2.9	7.1 +/- 2.9	P<0.001
GR	3 (12%)	16 (12%)	p<0.01
MCGR	2 (8%)	49 (37%)	
Rib Based	21 (81%)	64 (48%)	
Unknown	0 (0%)	5 (4%)	


Response to Treatment

Elevated Hgb preop:

-Hgb decreases over time

Normal Hgb preop:

-No change in Hgb

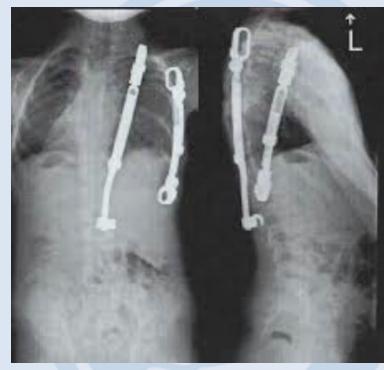
Limitations

Preliminary data

Attrition rate

-Malnourishment, chronic respiratory acidosis, etc.

Conclusions


Elevated Hgb in small percentage of EOS

Younger, sicker patients?

Chest based deformity?

Elevated Hgb corrects after surgery

May be useful in small subset of patients

Thank you!

