

Mucopolysaccharidoses and spinal deformities

R. Stücker

Department of Pediatric Orthopedics The Children's Hospital Hamburg-Altona and University Clinic Hamburg

Confict of interest disclosure

- Travel expenses and speaker fees
 - Nuvasive
 - Depuy / Synthes

- Lysosomal enzyme deficiencies result in progressive accumulation of natural (macro-) molecules
- Macromolecules which cannot be degraded are mucopolysaccharides = glykosaminoglycans = GAG's
- GAG's are biological active molecules in the cell membrane and extracellular matrix

MPS (from Wikipedia)

Ein Unternehmen des UKE

					Main mucopolysaccl	naridoses		
Type ^[1]	Common name Other names	OMIM Gene Locus Deficient enzyme		Deficient enzyme	Accumulated products	Symptoms	Incidence	
MPS IH	Hurler syndrome	607014&				Heparan sulfate		
MPS IH/S	Hurler-Scheie syndrome	607015 _ේ					Intellectual disability, micrognathia, coarse facial	
MPS IS	Scheie syndrome Formerly: Mucopolysaccharidosis type V	607016虚	IDUA	4p16.3	α-L-iduronidase	Dermatan sulfate	features, macroglossia, retinal degeneration, corneal clouding, cardiomyopathy, hepatosplenomegaly	1:100,000 ^[2]
MPS II	Hunter syndrome	309900 ☞	IDS	Xq28	Iduronate sulfatase	Heparan sulfate Dermatan sulfate	Intellectual disability (similar, but milder, symptoms to MPS I). This type exceptionally has X-linked recessive inheritance	1:250,000 ^[3]
MPS IIIA	Sanfilippo syndrome A Sulfamidase deficiency	252900&	SGSH	17q25.3	Heparan sulfamidase			/, 1:280,000 ^[4] – 1:50,000 ^[5]
MPS IIIB	Sanfilippo syndrome B NAGLU deficiency	252920&	NAGLU	17q21.2	N-acetylglucosaminidase	- Heparan sulfate	Developmental delay, severe hyperactivity, spasticity, motor dysfunction, death by the second decade	
MPS IIIC	Sanfilippo syndrome C	252930 &	HGSNAT	8p11.21	Heparan-α-glucosaminide N-acetyltransferase			
MPS IIID	Sanfilippo syndrome D	252940&	GNS	12q14.3	N-acetylglucosamine 6- sulfatase	-		
MPS IVA	Morquio syndrome A	253000┏	GALNS	16q24.3	Galactose-6-sulfate sulfatase	Keratan sulfate Chondroitin 6-sulfate	Severe skeletal dysplasia, short stature, motor dysfunction	1 in 75,000 ^[4]
MPS IVB	Morquio syndrome B	253010ൽ	GLB1	3p22.3	β-galactosidase	Keratan sulfate	gystanction	
MPS V	See MPS IS (Scheie syndrom	ie) above						
MPS VI	Maroteaux–Lamy syndrome ARSB deficiency	253200 ☞	ARSB	5q14.1	N-acetylgalactosamine-4- sulfatase	Dermatan sulfate	Severe skeletal dysplasia, short stature, motor dysfunction, kyphosis, heart defects	
MPS VII	Sly syndrome GUSB deficiency	253220┏	GUSB	7q11.21	β-glucuronidase	Heparan sulfate Dermatan sulfate Chondroitin 4,6- sulfate	Hepatomegaly, skeletal dysplasia, short stature, corneal clouding, developmental delay	<1:250,000 ^[6]
MPS IX	Natowicz syndrome Hyaluronidase deficiency	601492虚	HYAL1	3p21.31	Hyaluronidase	Hyaluronic acid	Nodular soft-tissue masses around joints, episodes of painful swelling of the masses, short-term pain, mild facial changes, short stature, normal joint movement, normal intelligence	

MPS – clinical presentation

- All have normal development initially
- Central nervous disease
 - Hydrocephalus, Myelopathy

- Cardiovascular disease
 - Valvular dysfunction, hypertension
- Pulmonary disease
 - Obstructive airway disease
- Ophthalmologic disease
 - Corneal clouding, glaucoma
- Hearing impairment
- Musculoskeletal disease
 - Short statue, contractures, spinal deformations
 - Dysostosis multiplex in I,II, VI, VII

Altonaer Kinderkrankenhaus

Overview orthopaedic manifestations

Ein Unternehmen des UKE

Table 2

Orthopaedic Manifestations of Mucopolysaccharidosis

Туре	Cervical Stenosis	Occipito- cervical Instability	Thora- columbar Kyphosis	Scoliosis	Hip Dysplasia	Proximal Femoral Epiphyseal Dysplasia	Genu Valgum	Carpal Tunnel Syndrome
MPS I (severe) ^a	2+	1+	3+	2+	3+	1+	2+	2+
MPS I (attenu- ated)	2+	0	0	0	0	0	0	3+
MPS II	1+	0	1+	1+	1+	1+	0	2+
MPS III	0	0	0	1+	0	2+	1+	0
MPS IV	2+	3+	2+	0	1+	3+	3+	0
MPS VI	3+	3+	1+	0	2+	2+	0	1+
MPS VII	?	?	?	?	?	?	?	?

0 = not reported, 1+ = rare, 2+ = common, 3+ = frequent, ? = unknown, MPS = mucopolysaccharidosis

^a Following hematopoietic stem cell transplantation

Adapted with permission from White KK, Harmatz P: Orthopedic management of mucopolysaccharide disease. J Pediatr Rehabil Med 2010; 3(1):47-56.

White, K. K., Sousa T.; Mucopolysaccharide Disorders in Orthopaedic Surgery, J Am Acad Orthop Surg 2013;21: 12-22

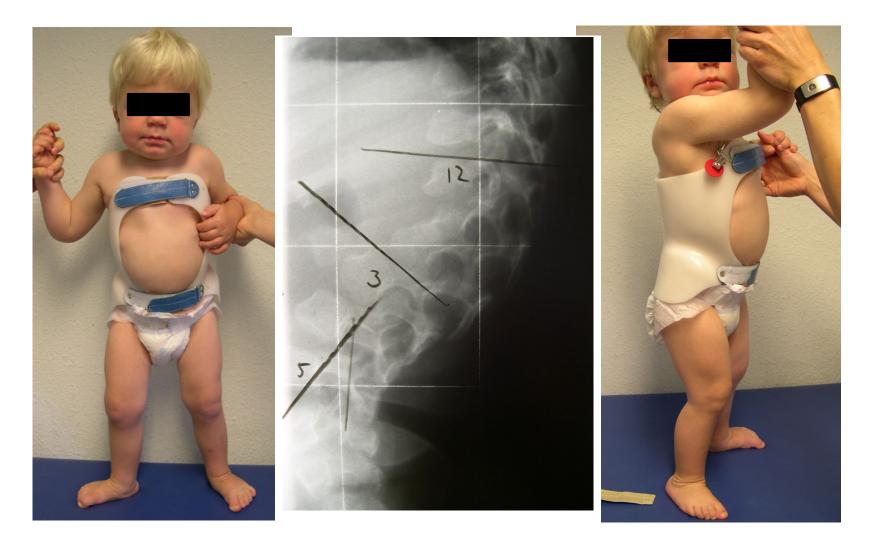
Kyphosis in MPS1 severity and natural history

- 33 patients
- Treated by BMT and/or ERT

Ein Unternehmen des UKE

- Mean kyphosis at 17 mo was 38°
- 15/33 had progression > 10°
- Magnitude of initial deformity was predictive for progression
- Initial curves of >45° are more likely to progress

Yasin et al, Spine 2014



MPS 1 and HSCT

- Musculoskeletal manifestations in mucopolysaccharidosis type I following hematopoietic stem cell transplantation Schmidt, M., Breyer, S., Löbel U., Yarar S., Stücker R., Ullrich K., Müller I., Muschol N Orphanet Journal of rare Diseases, 2016
 - N= 19 patients
 - Stable or improved diameter of craniocervical junction in 67%
 - Correction or stabilization of odontoid hypoplasia in 64%
 - Thoracolumbar kyphosis, scoliosis, genu valgum and hip dysplasia were progressive

Bracing for thoracolumbar kyphosis

- There is no evidence to support bracing
 - Tandon et al, 1996

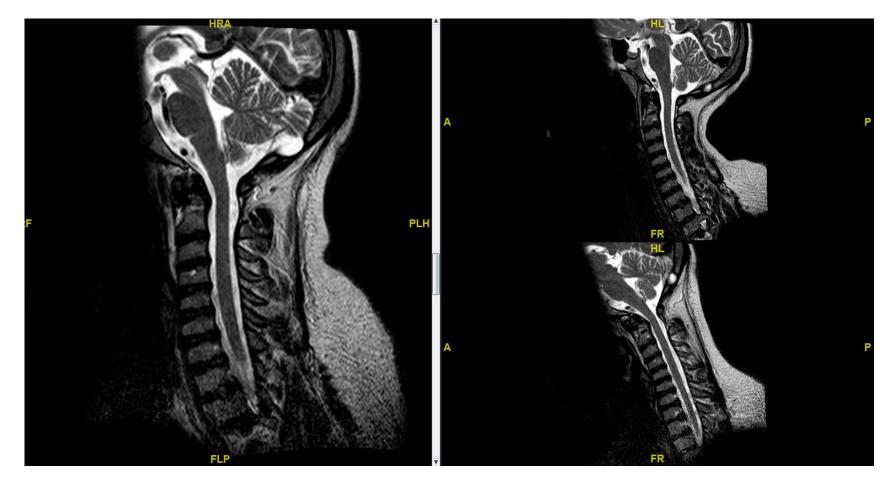
- However, there is also no evidence that bracing is not helpful
- Recommendations to brace when kyphosis is still flexible (Blaw, Langer; 1969)
- May have negative effects on pulmonary function and may increase breathing efforts

Altonaer Kinderkrankenhaus

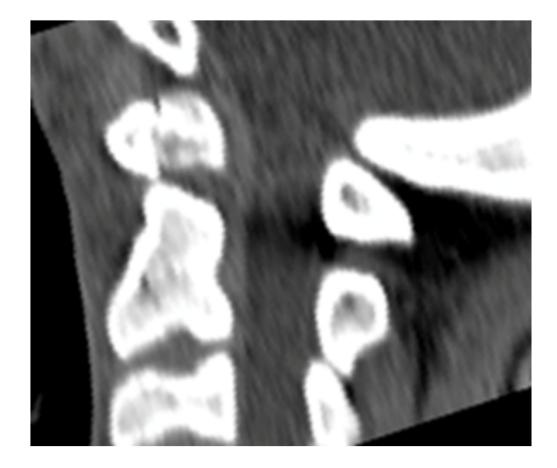
Ein Unternehmen des UKE

Cervical spine abnormalities and deformities

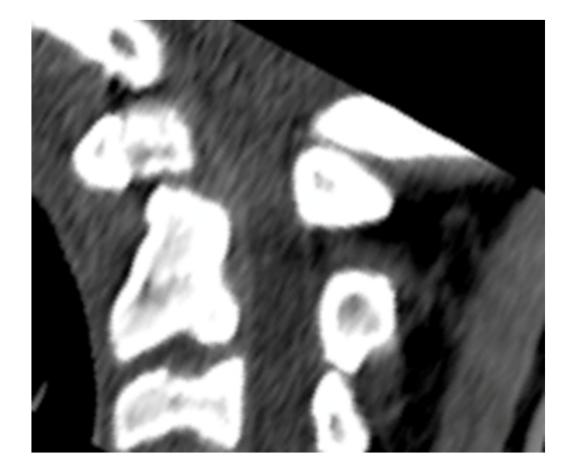
- Cervical spine
 - Spinal stenosis and cord compression
 - Odontoid hypoplysia
 - Atlantoaxial instability
- Thoracolumbar gibbus
 - Bullet shaped vertebra
 - Wedge shaped vertebra



Spine – cervical instability


Ein Unternehmen des UKE

Dynamic testing in MRI


Altonaer Kinderkrankenhaus

Ein Unternehmen des UKE

Altonaer Kinderkrankenhaus

Ein Unternehmen des UKE

Spinal deformities in MPS

- Cervical spine problems need to be addressed first
 - Spine fusion for deformities carries a high risk of severe neurologic compromize due to cervical spine anomalies
- Decompression and fusion of cervical spine often necessary
- In thoracolumbar kyphosis short posterior fusion from end to end vertebra and decompression by posterior approach (N=10)
 - No need for anterior approaches

Altonaer Kinderkrankenhaus

Scoliosis in MPS

- Similar to kyphosis as a result of vertebral deformity
- Slow or no progession
- Spine fusion may become necessary in adolescence
- Always combine with
 decompression if necessary

Cervical stenosis in small children

Ein Unternehmen des UKE

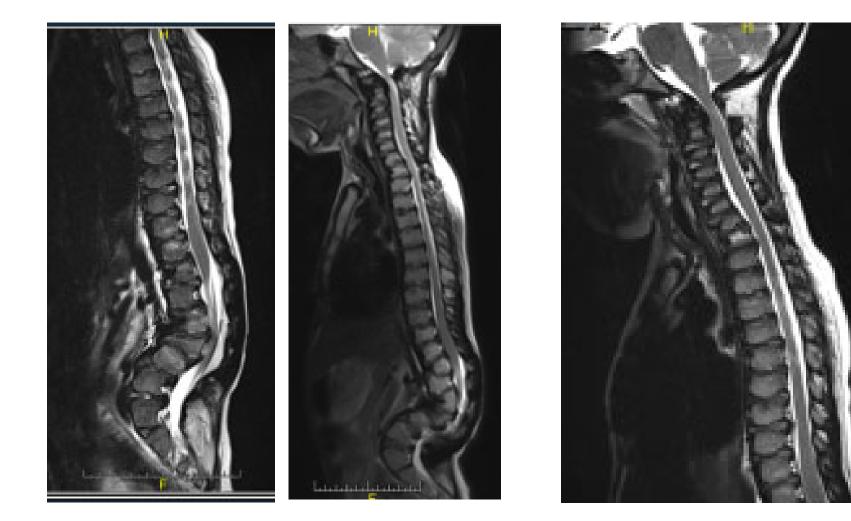
Stabilization in young patients

Spine – Cervical stenosis in older children, > 4 years old

Ein Unternehmen des UKE

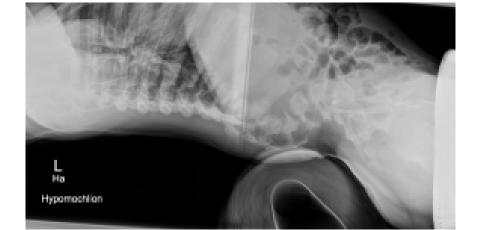
Surgical procedures

- Decompression and stabilization



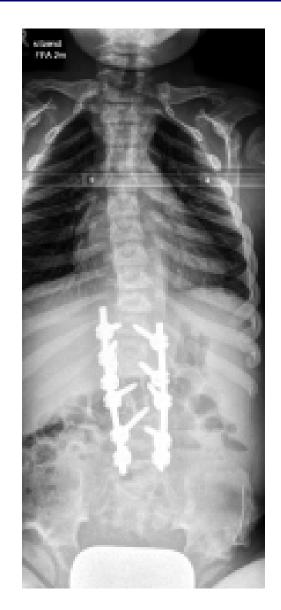
Indications for surgey

- Ein Unternehmen des UKE
- Kyphosis > 40°
 - Chan, Mackenzie, 2009
- Kyphosis > 70, scoliosis > 50°
 - White et al, 2009
- Presence of myelopathy
- Anterior-posterior vs posterior only



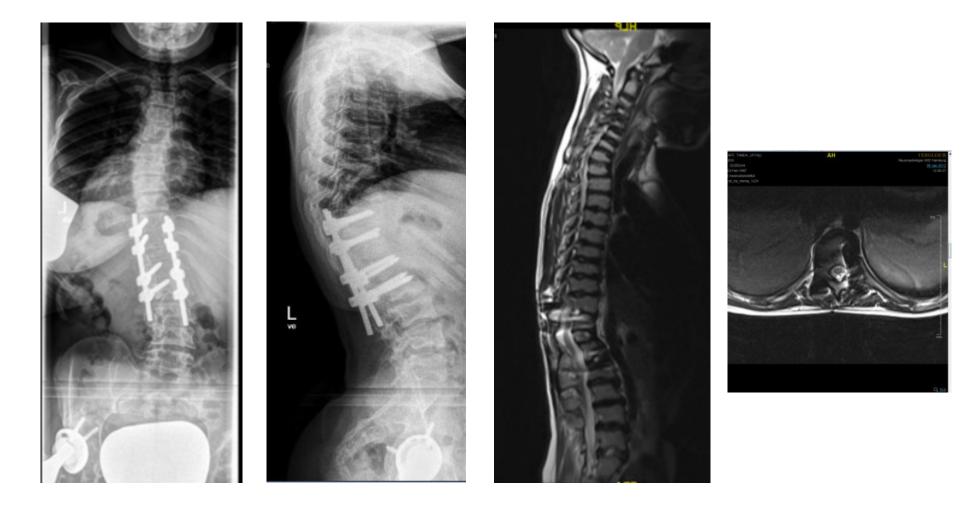
W.,C. 16 year old male with MPS type 1

Ein Unternehmen des UKE

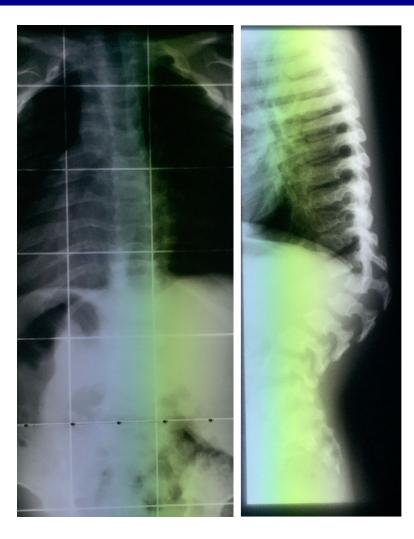

116°

Altonaer Kinderkrankenhaus

Ein Unternehmen des UKE

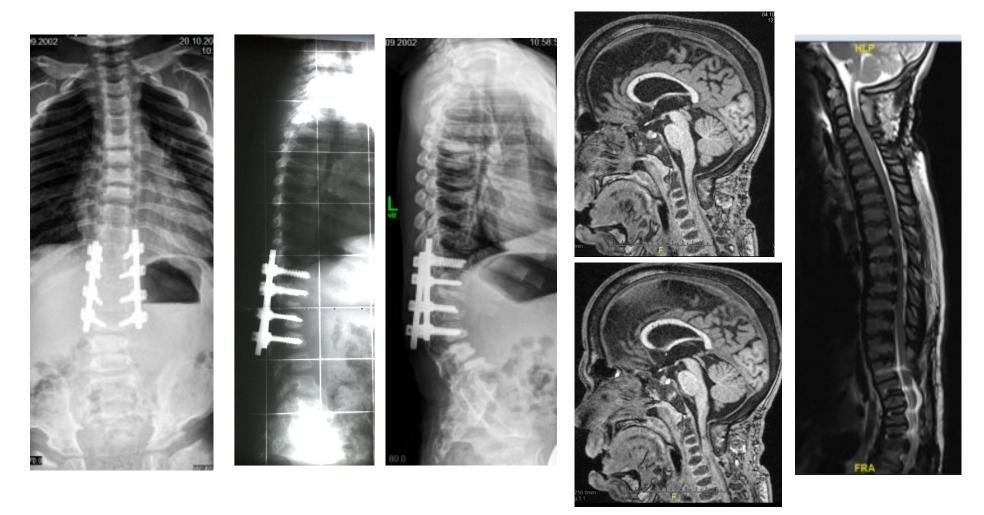


G, T., 19 year old girl with MPS type 4, no ERT


Ein Unternehmen des UKE

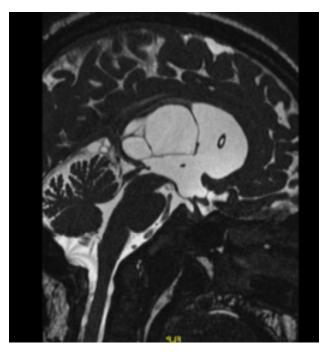
8 years follow-up after posterior only correction of kyphosis note remodelling of spinal canal

3 year old boy with MPS type I



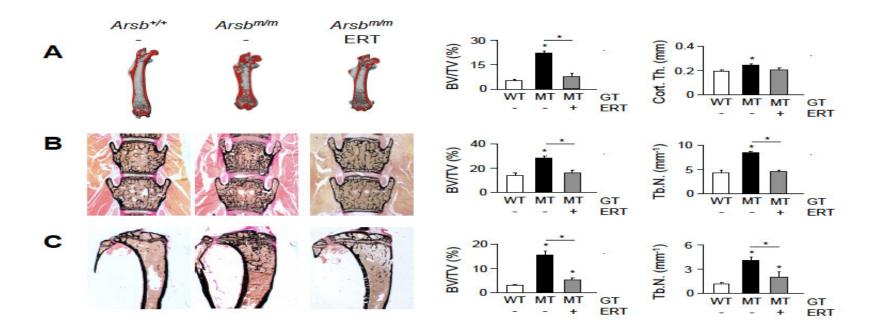
9 years follow-up

Ein Unternehmen des UKE


Fusion seems to promote remodelling of spinal canal and prevent recurrent spinal canal stenosis

22 year old girl wit MPS type 1,8 years after cervical spine decompression and fusion




9 year old female with MPS type 1, 6 years after cervical spine fusion and decompression

Altonaer Kinderkrankenhaus

Unpublished data (Hamburg) type VI mouse and ERT

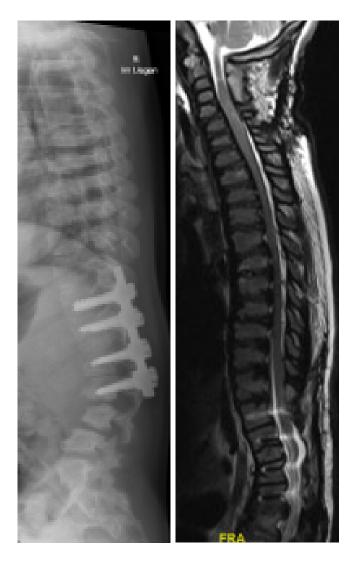
Ein Unternehmen des UKE

ERT normalizes trabecular bone and cortical thickness

- A = Femur
- B = Spine

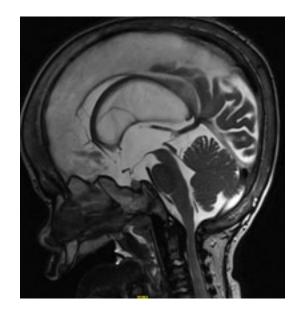
The future ??

• C = Tibia

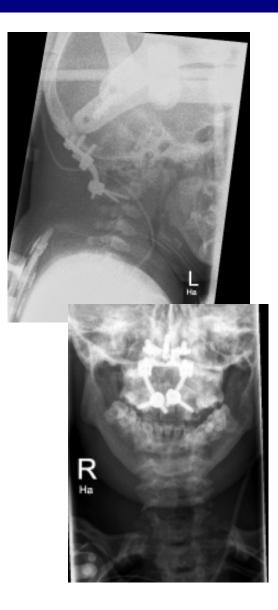


- Always investigate cervical spine in MPS
- In case of deformity and cervical spine abnormality address cervical spine first
- Progressive kyphosis > 45° is an indication for surgery
- Surgery can be performed posterior only with no need for anterior decompression
- Fusion seems to lead to remodelling of spinal canal, but watch adjacent levels
- There seems to be limited use for growth
 preservation surgery

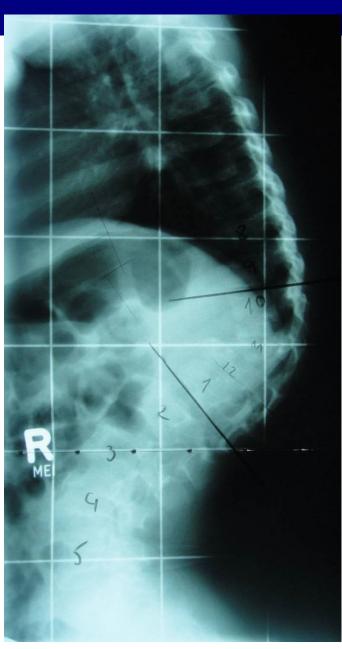
Decompression vs fusion Hamburg experience


- Ein Unternehmen des UKE
- Decompression
 - often results in recurrent spinal canal stenosis
 - May result in instability
- Fusion
 - Seems to avoid GAG-accumulation and promotes spinal canalremodelling
 - May produce instability and spinal canal stenosis at adjacent levels

Evers, Emily 2006, Typ 1 Enzymersatz und KMT



- Growth hormone treatment under investigations
- HSCT preserves mental abilities and improves life expectancy and quality of life
- BMT does not alter natural history of muskuloskeletal disorders in type 1
 - Weisstein, 2004
- Effects of HSCT
 - Growth of odontoid process may normalize
 - Spinal instability and spinal cord compression may still occur but may be less common



Altonaer Kinderkrankenhaus

Correction by PSO

Kinderkrankenhaus

hen des UKE

Enzymatic treatment

Ein Unternehmen des UKE

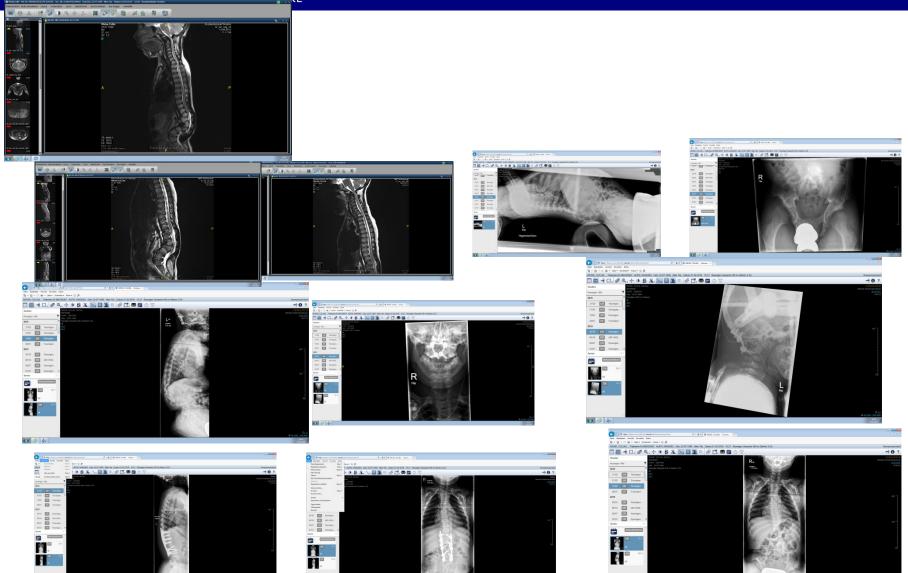
- May prevent mental retardation
- Does not change musculoskeletal features

What is dysostosis multiplex?

- A constellation of radiographic abnormalities resulting from defective endochondral and membrannous growth
 - Hypoplystic vertebral bodies
 - Shallow acetabuli
 - Enlargement of skull
 - J-shaped sella turcica
 - Broadening of the clavicles and ribs
 - Hypoplastic epiphyses
 - Thickened diaphyses
 - Short metacarpals with proximal tapering (bullet shape)

MPS Disease Spectrum

MUCOPOLYSACCHARIDOSIS							
Туре	Eponym	Deficient Enzyme	Accumulated Products	Incidence	Neurologic Symptoms		
MPS 1	Hurler syndrome	α-L-iduronidase	Heparan sulfate Dermatan sulfate	1 in 100,000	Mental retardation Retinal degeneration		
MPS 11	Hunter syndrome	Iduronate sulfatase	Heparan sulfate Dermatan	1 in 100,000	Mental retardation		
	Sanfilippo syndrome A	Heparan sulfamidase		1 in 100,000	Developmental delay Severe hyperactivity Spasticity Motor dysfunction		
MPS III	Sanfilippo syndrome B	N-acetyl glucosaminidsase					
	Sanfilippo syndrome C	Acetyl-CoA:alpha- glucosaminide acetyl transferase	Heparan sulfate				
	Sanfilippo syndrome D	N-acetyl glucosamine 6-sulfatase					
MPS IV	Morquio syndrome A	Galactose-6-sulfate sulfatase	Keratan sulfate Chondroitin 6-sulfate	1 in 75 000	Matau duction ettar		
	Morquio syndrome B	Beta-galactosidase	Keratan sulfure	1 in 75,000	Motor dysfunction		
MPS VI	Maroteaux-Lamy syndromq	N-acetyl galactosamine- 4-sulfatase	Dermatan sulfate		Motor dysfunction		


• Cervical spine decompression and fusion

- soft tissue thickening resolves after spinal fusion (Stevens et al, 1991)
- mm

Wicke,Collin

- BMT not effective against bone manifestations
- Recombinant enzyme therapy targeted towards the bone tissue is currently being developed.

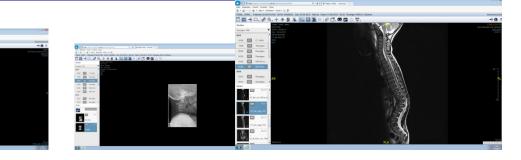
- Investigations in a mouse model
- Bone morphology after ERT
- Enzyme replacement corrects trabecular bone pathologies in mice with mucopolysaccharidosis-VI

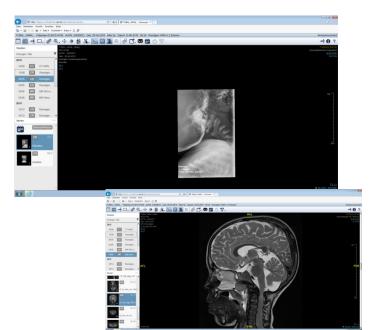
- Enzyme replacement corrects trabecular bone pathologies in mice with mucopolysaccharidosis-VI
 - Schmidt, Breyer, Löbel, Müller, Yarar, Catalá–Lehnen, Stücker, Ullrich, Muschol (University Clinic Hamburg)

- Substantial improvement from bone marrow transplantation
- But spinal deformities can not be avoided
- Some positive influence on craniocervical junction with less myelopathy (Schmidt et al, Hamburg)
- Patients with initial deformity of >45° kyphosis are very likely to progress (Yasin et al, 2014)

Altonaer Kinderkrankenhaus

🗆 🖬 🚽 🗆 . 🌌


1912 III 1912 III 1919


-

2

Tobal, Jwan typ 4, 6 J keine med Therapie da Flüchtling

Ein Unternehmen des UKE

Altonaer Kinderkrankenhaus

- ERT and HSCT still have little impact on spinal deformity
- BMT does not reduce spinal deformity
 - Tandon et al, 1996 (n=12)
 - 10/12 had kyphosis, 1/12had scoliosis, 1/12 no deformity
- Growth of the odontoid process may normalize after HSCT but enlargement of odontoid process continues spinal cord compression less common
 - Weisstein, 2004; Schmidt 2016