The Significance of Clunking In Magnetically Controlled Growing Rod Distractions: A Prospective Analysis of 22 Patients

Jason Pui Yin Cheung, Karen Yiu, Dino Samartzis,

Kenny Kwan, James Tan, Kenneth MC Cheung

Division of Spine Surgery

Department of Orthopaedics and Traumatology

The University of Hong Kong

Disclosures

• Nil

Surgical treatment for early onset scoliosis (EOS)

- Traditional growing rods (TGR)
 - Repeated surgeries for distractions every 6 months
 - Increased risk for anesthestic and wound complications
 - Psychological distress to both the child and family
- Magnetically-controlled growing rods (MCGR)
 - Non-invasive distractions done at out-patient clinic
 - More frequent distractions to mimic normal spinal growth

Magnetically controlled growing rods for severe spinal curvature in young children: a prospective case series

Lancet 2012; 379: 1967-74

Kenneth Man-Chee Cheung, Jason Pui-Yin Cheung, Dino Samartzis, Kin-Cheung Mak, Yat-Wa Wong, Wai-Yuen Cheung, Behrooz A Akbarnia, Keith Dip-Kei Luk

Deformity

Lengthening of Dual Growing Rods and the Law of Diminishing Returns

Wudbhav N. Sankar, MD, David L. Skaggs, MD, Muharrem Yazici, MD, Charles E. Johnston II, MD, Suken A. Shah, MD, Pooya Javidan, MD, Rishi V. Kadakia, BS, Thomas F. Day, MD, and Behrooz A. Akbarnia, MD

Journal of Orthopaedic Surgery 2016;24(3):332-7

• Autofusion with TGR

 Diminishing gains in MCGR?

Frequent small distractions with a magnetically controlled growing rod for early-onset scoliosis and avoidance of the law of diminishing returns

Jason Pui Yin Cheung, Cora Bow, Dino Samartzis, Kenny Kwan, Kenneth Man Chee Cheung Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, SAR, China

Clunking: rod slippage during distraction/clunking sound and feeling

Clunking: rod slippage during distraction/clunking sound and feeling

<u>Aim</u>: To assess the occurrence and potential determinants associated with MCGR clunking during distractions

Methods

- Prospective EOS study
- December 2009-March 2016
- At least 2 years FU and 6 distraction episodes
- Monthly 2mm distractions
- Rod slippage/clunking
 - Early onset of clunking: ≤6 months
 - Late onset of clunking : >6 months or never clunked
- Trend of expected vs achieved distraction lengths
 - Relationship with clunking

Factors related to clunking

- Maturity (Risser, DRU, age)
- Body habitus (height, weight, BMI)
- Distraction (number of distractions, timing)
- Curve magnitude (Cobb angle, fulcrum, FBCI)
- Length (T1-12, T1-S1, instrumented)
- Magnet related (distance between magnets and to apex)

- <u>Analyses</u>
- Influencing timing of clunking (early vs late)
- Mann-Whitney test (p-value of <0.05 considered significant)

Results

- 22 patients
- Mean
 - Age 7.1±4.0 years
 - FU 49.8±11.0 months
 - 32.4±11.0 distractions
- Early-onset = 14 patients
- Late-onset = 8 patients

Parameter at implantation		Mean±SD (early)	Mean±SD (late)	p-value
Height		146.4±12.2	106.4±8.5	0.001*
Weight		35.6±10.2	17.7±2.5	0.001*
BMI		15.4±5.8	12.0±1.7	0.006*
Risser sign		0.6±1.0	0.0±0.0	0.104
Radius grade		6.2±0.9	3.8±1.0	0.007*
Ulna grade		5.0±1.0	2.1±1.3	0.006*
Chronological age				0.003*
Cobb angle	ariv-ons	et ciunkin	g	0.124
ulcrum Cobb angle				0.843
Fulcrum flexibility				0.843
T1-12				0.012*
T1-S1				0.003*
T5-12 kyphosis Taller heavier older				0.785
Parameters after impla				
Correction rate				0.838
FBCI				0.606
Immediate postop Cob				0.633
Immediate postop T1-1 N/2 groats closer to gothor				0.012*
Immediate postop T1-S	viagnets	ciusei lug	einer	0.001*
Immediate postop T5-12 K	ypnosis	18.9±12.8	14.4_13.2	0.765
Instrumented length		223.5±46.5	232.5±16.7	0.539
Distance between magnets		40.4±7.9	49.3±9.6	0.022*
Distance between magnet and curve apex		35.1±37.0	57.4±33.0	0.091
(right)				
(left)		48.5±20.6	49.2±43.4	0.426
Department of Orthopaedics and Traumatology, The University of Hong Kong 香港大學矯形及創傷外科學系				

Occurs after clunks

Expected vs achieved distraction length mismatch

Diminishing gains after certain rod usage

Discussion

- Expected distraction lengths do not translate to achieved distraction lengths
- Rod slippage leads to increased mismatch
- Increased body habitus and reduced distance between internal magnets are associated with early rod slippage
- Reduced length gains were only observed after achieving one-third of the allowable distracted length
- Length gains return to baseline after rod exchange.

Spine

SPINE Volume 42, Number 00, pp 000-000 © 2017 Wolters Kluwer Health, Inc. All rights reserved.

Deformity

Rod Lengthening With the Magnetically Controlled Growing Rod

Factors Influencing Rod Slippage and Reduced Gains During Distractions

Jason P.Y. Cheung, MBBS, MMedSc, FHKCOS, FHKAM, FRCSEd,* Karen K.L. Yiu, MSc,* Dino Samartzis, DSc,* Kenny Kwan, FHKCOS, FHKAM, FRCSEd,* Boon-Beng Tan, MD, Ms, Ortho,*,† and Kenneth M.C. Cheung, MBBS, MD, FRCS, FHKCOS, FHKAM*

Thank You

