Measuring spinal growth in EOS: What are the goals and what does it tell us

James O. Sanders, MD

Frank C. Wilson, Distinguished Professor

Chair Orthopaedics University of North Carolina at Chapel Hill

Three of the most important tools in measuring child health

- Stadiometer
- Scale
- Growth Charts

Height Measurements are Only as Accurate as the Technique

Technique for measuring erect height (Herpenden Stadiometer)

- Child should be fully erect.
- Head in the Frankfurt plane.
- Back of the head, thoracic spine, buttocks, heel should touch the vertical axis of the stadiometer.
- Should be measured in triplicate and the mean should be recorded.

Stunting

- Not etiology specific
- A generalized measure of health

There are Functional Alternatives to Height Measurement when Needed

- sitting height
- arm span
- upper arm length
- ulnar length

Disease Specific Growth Charts

- Use with caution
 - Often small numbers, retrospective
 - Measurements not standardized
 - Unsure of nutritional or health status
 - No adjustment for racial or other characteristics

Disease Specific Growth Charts

- Trisomy 21 (Down syndrome) (Cronk, 1988)
- Prader-Willi syndrome (Holm, 1995)
- Williams syndrome (Morris, 1988)
- Cornelia deLange syndrome (Kline, 1993)
- Turner syndrome (Ranke, 1983; Lyon, 1985)
- Rubinstein-Taybi syndrome (Reference)
- Marfan syndrome (Pyeritz, 1983; Pyertiz, 1985)
- Achondroplasia (Horton, 1978)

Actual Growth - Berkeley Series

Childhood Growth

- Children tend to grow in a specific percentile (canalization).
- Growth is slower than infancy and relatively linear.

Spine Growth in Childhood

- Relatively linear and same for both sexes.
- T1-S1:
 - Our Data1.5cm/year
 - DiMeglio1.2cm/year

Parent, Beauséjour ,El-Hawary Sanders, Yaszay, Akbarnia

True spine 3D length = T1-S1 height x 1.026

Spinal growth (T1-S1) is very rapid during the growth spurt.

	Girls	Boys
Childhood	1.5cm/year	1.5cm/year
Growth Spurt	2.5cm/year	2.5cm/year
Terminal Growth	0.4cm/year	0.4cm/year

Growth Remaining (Multipliers) to Skeletal Maturity

 The relationship between growth remaining and skeletal maturity is tight during the growth spurt

Early onset scoliosis can create:

- A deformed breathing apparatus
 - Short
 - Twisted
 - Mechanically constricted
- A mismatch between respiratory ability and physiological demand.
- Poor health

What should we follow?

- Height readily available.
- Effected by:
 - spinal deformity
 - underlying disorder
- Does provide an overall metric:
 - vs. age in preadolescent children
 - vs. PGA in adolescence

Courtesy Brandon Ramos

Spine Specific Measures

- T1-S1
- T1-T12
- Ratios

T1-S1

- Most curves effect both thoracic and lumbar spine
- T1-S1 is a global measure
- How much do we really care about the lumbar spine?

Crowding from Lumbar Spine McCarthy

T-S1 and Lumbar Spine Length

- It takes very severe lumbar spine shortening to cause thoracic crowding and pulmonary dysfunction.
- In general, it is the thoracic dimension (excluding crowding) that matters.

- May be reflective of pulmonary volume
- Correlates with FVC in a cohort with largely congenital scoliosis (20/28)
- All severe curves fused in situ

As noted by CJ

• Not all patients with short chests do poorly

Does this boy with cleidocranial dysostosis need T1-12 of 22cm to function well?

Ultimately, chest growth should match the remainder of the body

A mouse does not need a human sized chest

Spondylothoracic Dysplasia (Ramirez)

Severe Restrictive Respiratory Pattern

- Average spirometric values 27.9% FVC
- 29.5% predicted FEV1
- 0.92 FEV1/ FVC ratio
- clinically stable restrictive disease with an adequate quality of life not requiring supplemental oxygen in adults
- "It is surprising how well our older patients have done clinically with severe restrictive lung disease secondary to a decreased thoracic height."

Ratios

- Ratios may be more reflective of patient size and pulmonary need than absolute measurements.
- Much like BMI is a better measure of cachexia or obesity than weight alone.

Pelvic Width to Height (Emans, Johnston):

The Orthopedic Concept

- The chest is a box with the spine creating the vertical component
- All current EOS devices work to make a static box bigger.
- Does not account for the dynamic nature of breathing

We need a paradigm change for EOS

- It's not just a bigger box.
- It's dynamic expansion and contraction with a bigger box –a larger, more effect bellows.

How do we get there?

• T1-S1

- Relate to age in childhood
- Relate to PHV during adolescence
- Not as important as chest growth for lung function
- Use PSSG data to correlate mature PFT with T1-T12 ratios to:
 - BMI
 - Height
 - Pelvic width
- Think more about chest dynamics rather than purely a bigger box.